

WELL VERIFICATION FREQUENCY

JUSTIFICATION FOR CHANGE ?

Richard Conway Well Integrity Engineer

Overview

- Objectives
- RSRUK Wellstock
- Verification process
- Historical data review
- Verification data results
- Changes and budget planning
- Re-cap

Study Objectives

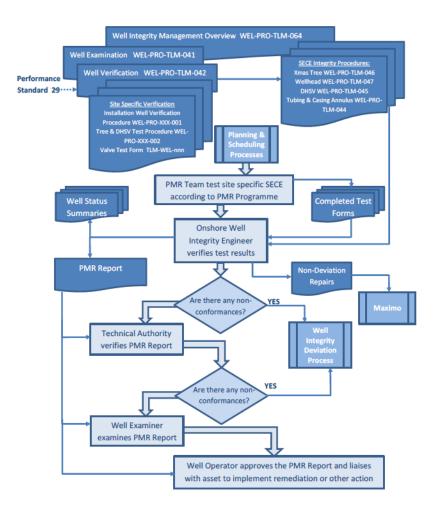
- To investigate failure rates for safety critical components on all platform wells
- Determine the ideal spacing between Well Verification Routines
- Identify any opportunity to extend the frequency or optimise activities

RSRUK Well Stock

- 10 Platforms / 241 wells most legacy
- 4 different tree/wellhead vendors
- Equipment in excess of 30 years old
- Split & solid gate valves
- Loose spool & multi-bowl wellheads
- Metal to metal & elastomeric seals
- A range of well types
 - -Natural producers / water injection

-Gas lift / ESPs / Jet Pumps

The Challenge


The primary objective is to keep people safe, but:

- Well Verification costs:
 - Resources
 - Beds
 - Production Deferment
- We need to:
 - Optimise utilisation
 - Focus attention where needed
 - Minimise shut-in time

While ensuring the barrier envelope is intact

Well Verification Cycle

6 Month

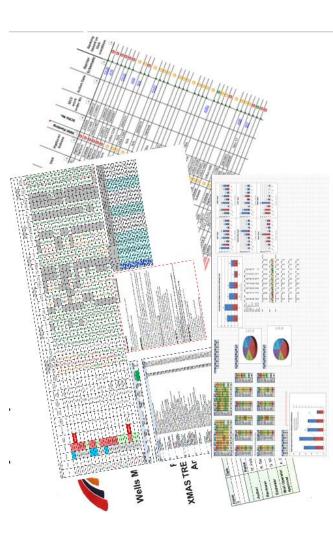
- Test all tree valves
- Test DHSVs and Control Lines

12 Month

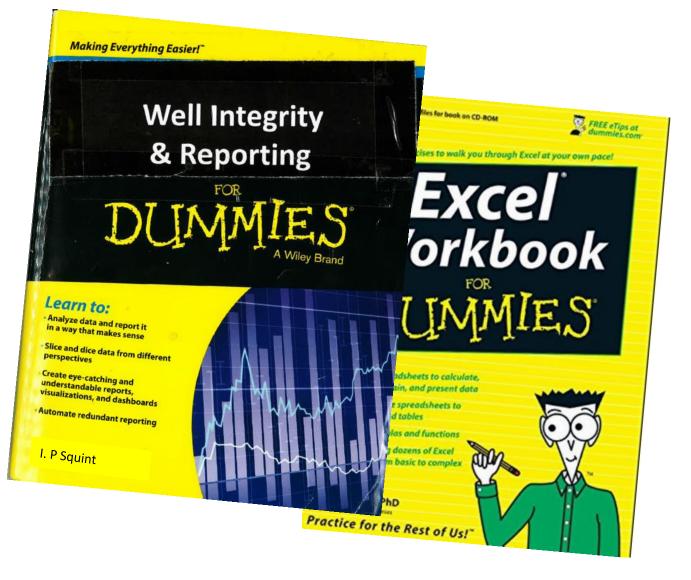
- Test all tree and wellhead valves
- Test DHSVs and Control Lines
- KP4 Survey

Biennial

• Annulus Top-Up/Pressure Test


Well Verification Routine

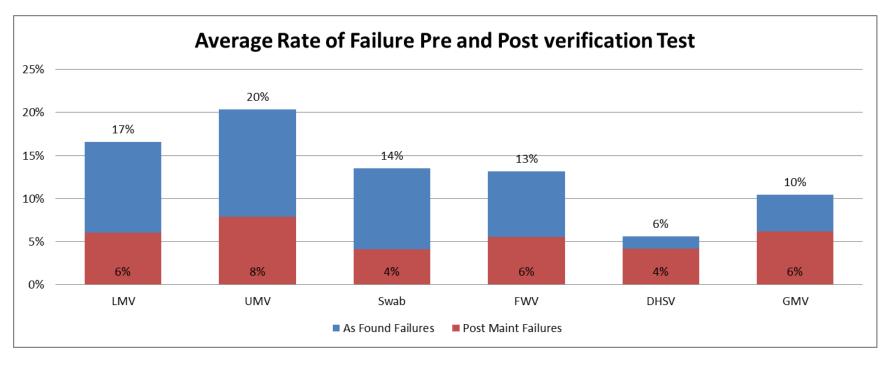
- Not Preventative Maintenance
 - We test, grease and function
 - Repair if we don't need a tubing plug
 - Verify the well condition, make sure there are barriers and make sure personnel are safe from the well
- Well Verification aligned to:
 - Internal performance standard
 - Safety Case Regulations
 - Design and Construction



Output & Issues

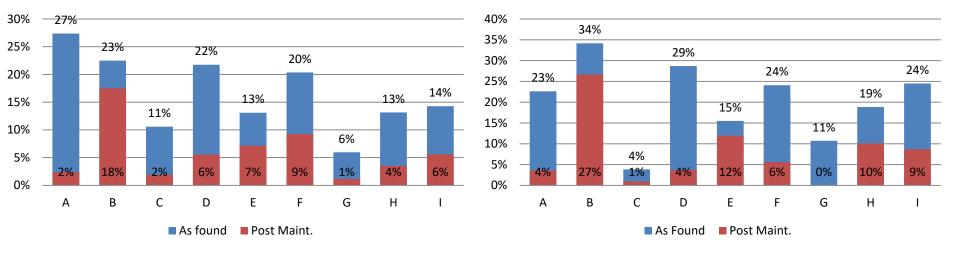
- Previously only provided assurance to continue
 - Verify the well, update a status summary, inform
- But:
 - Very little time looking for trends
 - No historical evaluation
 - What did all the data tell us?

Transforming Data to Information



Well Verification - Evaluation

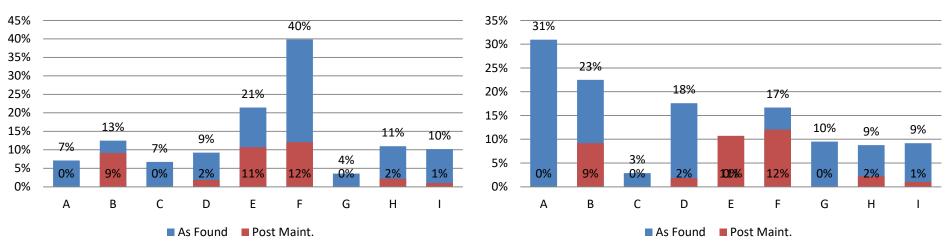
Pre											Post										
	2013/ 🔻	2014 / 1 🔻	2015/1 🔻	2015 / 2 🔻	2016 / 2 🔻	2017/ 🔻	Averag 🔻	Failure 🔻	1			2013/ 🔻	2014 / 🔻	2015/1 🔻	2015 / 2 🔻	2016 🔻	2017/1 🔻	Averag 🔻	Failure 🔻		
LMV	5	2	3	5	5	3	4	27%	$\overline{}$	2.74E-01	LMV	0	0	1	0	0	1	0	2%		2.38E-02
UMV	4	2	3	4	4	2	3	23%		2.26E-01	UMV	0	0	2	0	0	1	1	4%	$ \land \checkmark $	3.57E-02
FWV	7	3	1	7	7	1	4	31%	$\sim \sim$	3.10E-01	FWV	3	2	1	3	3	1	2	15%	$\sim \sim$	1.55E-01
Kill	2	1	0	2	2	0	1	8%	\searrow	8.33E-02	Kill	1	0	0	1	1	0	1	4%	$\searrow \bigtriangleup$	3.57E-02
Swab	2	0	0	2	2	0	1	7%	\searrow	7.14E-02	Swab	0	0	0	0	0	0	0	0%	• • • • • • •	0.00E+00
GMV	2	0	3	2	2	4	2	15%	V-V	1.55E-01	GMV	1	0	3	1	1	4	2	12%	\sim	1.19E-01
MGMV	1	0	0	1	1	0	1	4%	\searrow	3.57E-02	MGMV	0	0	0	0	0	0	0	0%	• • • • • • •	0.00E+00
A-ann vlv (Live)	0	0	0	0	0	0	0	0%	· · · · · · ·	0.00E+00	A-ann vlv (Live)	0	0	0	0	0	0	0	0%	· · · · · · ·	0.00E+00
A-ann vlv (Offside)	1	1	1	1	1	1	1	7%	· · · · · · · · ·	7.14E-02	A-ann vlv (Offside)	0	0	0	0	0	0	0	0%	····	0.00E+00
B-ann vlv (Live)	0	0	0	0	0	0	0	0%	· · · · · · · ·	0.00E+00	B-ann vlv (Live)	0	0	0	0	0	0	0	0%		0.00E+00
B-ann vlv (Offside)	0	0	0	0	0	0	0	0%	····	0.00E+00	B-ann vlv (Offside)	0	0	0	0	0	0	0	0%		0.00E+00
C-ann vlv	0	0	0	0	0	0	0	0%	• • • • • • •	0.00E+00	C-ann vlv	0	0	0	0	0	0	0	0%	• • • • • • •	0.00E+00
DHSV	0	0	0	0	0	0	0	0%	····	0.00E+00	DHSV	0	0	0	0	0	0	0	0%		0.00E+00
DHSV Control Line	0	0	1	0	0	2	1	4%	~~/	3.57E-02	DHSV Control Line	0	0	0	0	0	1	0	1%		1.19E-02
ADSV	1	1	1	1	1	0	1	6%		5.95E-02	ADSV	2	1	0	2	2	0	1	8%	\searrow	8.33E-02
ADHSV Control line	1	2	1	1	1	0	1	7%	<u> </u>	7.14E-02	ADHSV Control line	1	2	0	1	1	1	1	7%	·	7.14E-02
	26	12	14	26	26	13						8	5	7	8	8	9			Var.	


- 6 year review across all surface wells
- Looking at failures on all components
- Pre & Post grease and function

Average Rate of Failure

- Big range in valve reliability
- **Blue** failure in as-found condition
- Red failure after grease & function

Xmas Tree Master Valves

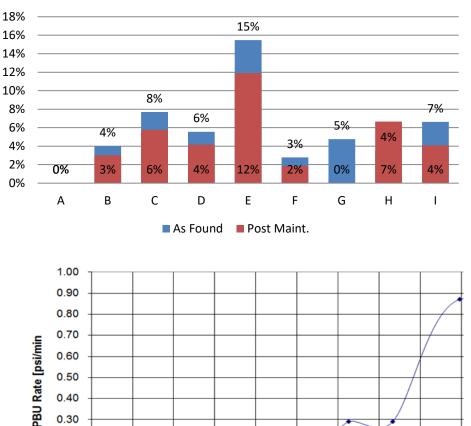


LMV Tests

UMV Tests

- Breakdown by platform, A to I
- Variation between site and valve

Swab & FWV Valves


SWAB Valve tests

FWV Tests

- No pattern across assets
- Failure rates consistent within sites

DHSV & GMVs

DHSV Tests

0.30 0.20

0.10

0.00

0.2

0.4

0.6

0.8

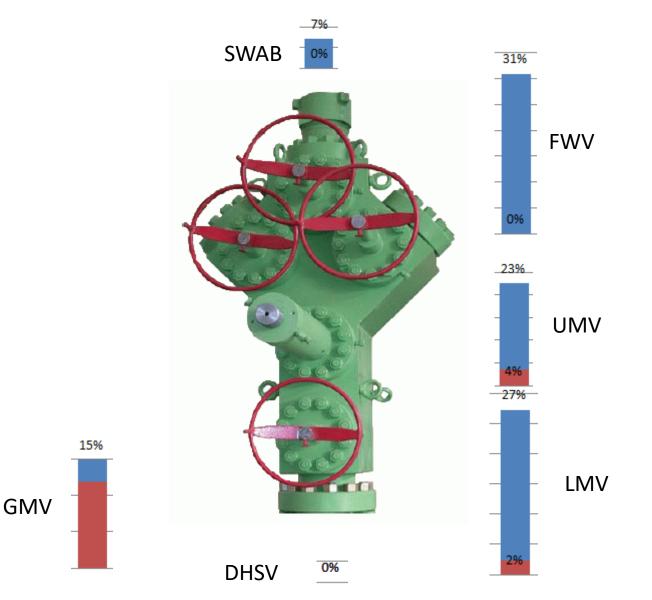
1

1.2

1.4

In((DT+T)/DT)

1.6


1.

25% 23% 20% 15% 14% 15% 10% 8% 6% 4% 5% 3% 0% 0% 0% А В С D Е F G н As Found Post Maint.

- Same equipment used on a number of platforms
- Failure rates different due to well conditions

GMV Tests

Platform A: Failure Tendency

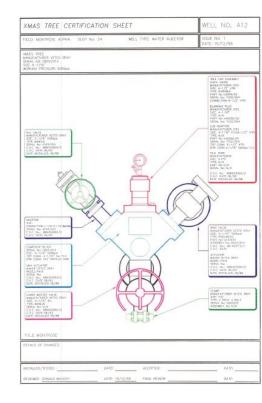
Results

- Verification routines identified impairment, failures drove reactive repairs
- Now looking for trends
- Historical evaluation
 - Failure rates on initial test are high
 - Failure rates post grease/ function are circa
 <10%
 - Now have reliability data

WELL / SLOT	A01/17
PURPOSE OF A	CTIVITY
п	EM
Tree Cap Inspec	ction
Xmas Tree Body	y
Upper Master V	alve – UMV
Lower Master V	alve – LMV
Flow Wing Valv	e – FWV
Offside Wing Va	alve – OWV
Swab Valve – S	V
Gas Master Valv	ve – GMV
Manual Gas Ma	ster Valve – MGM
A Annulus Valve	e – OSCV
A Annulus Valve	e – Left
A Annulus Valve	e – Right
B Annulus Valve	e – Left
B Annulus Valve	e – Right
C Annulus Valve	e
D Annulus Valve	e
INRV / SAS - Liv	e Side
INRV / SAS - off	side

12 Month Verification Schedule

Evaluation of the failure rates have identified that, yearly well verification confirms:


- Well stock status is understood
- Compliance with barrier philosophy
- The health and safety of personnel is ensured
- Barriers are available during shutdown

6 Month Verification Schedule

Failure rates have identified that:

- Verification testing on a 6 monthly cycle confirms previously known failures if repairs have not been carried out
- Following grease and function failure rates drop to a predictable rate

Predictive Failure Model

Count of DAT															
ASSET	•	TYPE OF FAILURE	2006		2007	2009	2010	2011	2012	2013	2014	2015	2016	2017	failures/Year
хххх		A-Annulus Valve Failure								3	1		2	8	3.50
		Actuator Failure								1					1.00
		Actuator piston seal weep									1				1.00
		B-Annulus Valve Failure							1					3	2.00
		C-Annulus Valve Failure								16				2	9.00
		Control Fluid Leak											1		1.00
		Control line block failure												1	1.00
		FWV Failure						1	4	5	2	2		3	2.83
		GMV Failure							1			1	2	1	1.25
		INRV Failure										2		1	1.50
		KP4 inspection finding												2	2.00
		KWV Failure							1					1	1.00
		LMV Failure				1							2		1.50
		Needle Valve												1	1.00
		Stem Packing failure							1		2		1	10	3.50
		Test/injection fitting failure												7	7.00
		Tree valve stem seal leak										1			1.00
		Tie Down Pin											1		1.00

Can't predict which wells will fail, but we can predict which failures may happen, so:

- Better budget planning
- Identify required platform days
- Shouldn't be a surprise

Summary

- 12 monthly Well Verification Routine
 - 1. Assures the well barrier envelope is sound.
 - 2. Identify repairs that <u>must</u> be carried out.
- Reactive repairs within required timeframe
 - 3. Assures compliance with company and industry best practice.
 - 4. See Point 1
- 6 monthly grease and function
 - 4. Confirms valves will close as required
 - 5. Failure data on how many valves will seal
 - 6. See Point 1

Conclusions

- Verification testing is essential to ensure the barrier envelope
- Evaluation of the data is critical
- From this data we changed to a risk based verification sequence, but not changed the frequency
- Historical data has now led to better budget planning.

Take Away

- Next focus is down hole
- The challenge is data acquisition using new technology
- This will complement the data we gather from verification testing of annulus, wellheads, trees and DHSVs

Re-Cap

- 241 wells on 10 platforms
- Good understanding of current status
- Verification is vital to compliance
- Historical data / statistical evaluation
- Failure rates understood
- Same schedule / different routine
- Predictive Failure Model
- Budget / resources optimised

Questions ?

