

Rigless, a Misnomer? Applications to late well lifecycles

Steven Allan Canny

4th October 2017 Aberdeen | United Kingdom

www.spe-uk.org

Safety Moment – Traveling Safely

Immunisations

- ✓ Recommended
- ✓ Actually Required
- ✓ Time Lag
- ✓ Provider Misconceptions

Insurance

- ✓ Local Offices
- ✓ Procedure
- ✓ Payment Bond
- ✓ Escalation

Emergency

- How do you identify as an insured person?
- ✓ Identification
- ✓ Company Contact
- ✓ Payment Bond Issues

"Its widely accepted Operators can derive cost savings through the utilization of Rigless Operations"

- Highly sensitive to well architecture, facility architecture, project execution models etc
- Numerous highly successful campaigns
- Tempered with unsuitable campaigns

"Wherever possible adopt Rigless Well Abandonment Operations"

- Evaluate where possible
- Data is Key!
- Well Categorization and project work scope generation to ensure commercial drivers are met

"Rigless Well Abandonment Services Help Kill, Plug 10 Wells in 234 Days, Save Operator \$10.8 Million"

- Technology Development with Operator specific to geo-region and facilities
- Consistent Well Architecture to develop Operator and Service Company competence

- £16,900,000,000 spend forecast, partially underwritten by the Treasury
- 950 UK Wells to permanently abandon in the next 10 years, 55% Platform wells
- Can Rigless Technologies be considered a viable alternative to Integral Rig's or Jack-Up's?

Source: Oil & Gas UK – Decommissioning Insight 2015

Platform Well P&A

Drilling Technology



Facility Requiring Intervention Well Operations

Well Entry and Intervention Heavy Workover Planned Fishing (P&A) Well Slot Recovery Well Slot Preparation

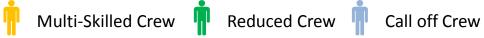
"Rigless" Technology

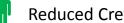
Coiled Tubing Units

Hydraulic Workover

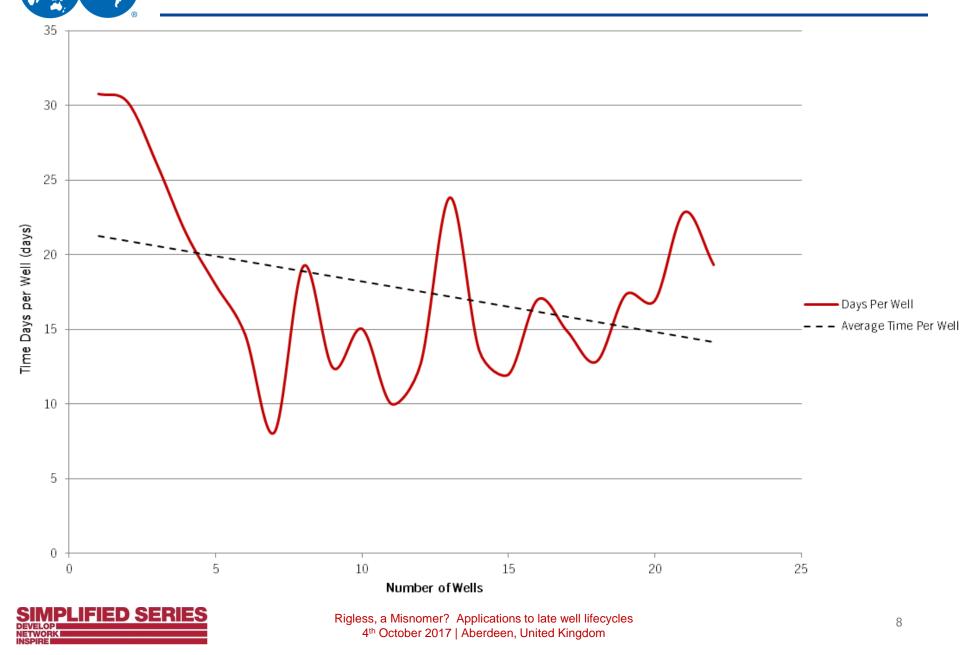
Workover/Pulling

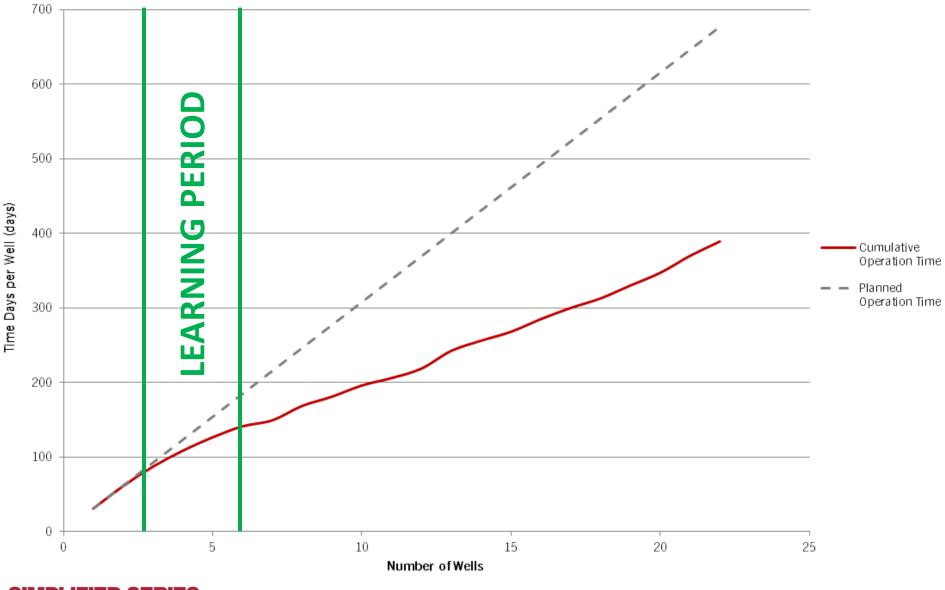
Technology Selection Examples


Parar	neter	Typ. Jack Up Rig	Typ. Semi-Tender Rig	Typ. Modular Drilling Unit	Typ. Pulling Unit	Typ. Hydraulic Workover Unit
	Drive Drawworks, Traveling Block		Drawworks, Traveling Block	Rack and Pinion Mast, Traveling Block	Hydraulic Mast, Rig Assist Jack	Casing Jack
	Capacity	> 2,100,000 lbf	> 1,000,000 lbf	800,000 lbf	Mast - 221,000 lbf Rig Assist - 600,000 lbf	460,000 lbf
Hoisting	НР	> 5,750	> 3,000	1,000	430	600
	Setback	Yes	Yes	No	Yes	No
	Design Speed	1,800 ft/hr	1,400 ft/hr	1,200 ft/hr	1,500 ft/hr	800 ft/hr
Datation	Drive Top Drive		Top Drive	Top Drive	Power Swivel Top Drive	Rotary Table
Rotation	Capacity	Up to 120,000 lb.ft	Up to 60,000 lb.ft	Up to 60,000 lb.ft	12,000 lb.ft or 21,000 lb.ft	22,000 lb.ft
	Туре	Automated Iron Derrickman	Work board in Derrick		Gantry System	
Setback	Capacity	> 2,250,000 lbf RII Triple or Quad Stands	> 750,000 lbf RII Stands 5.5" 19# 19,740ft		160,000 lbf R II 3.5" 13.3# 10,900 ft R III 3.5" 9.2# 17,380 ft	
Sub- Structure	Capacity	> 28,000,000 lbf combined loading	> 4,000,000 lbf combined loading	> 3,200,000 lbf combined loading	Up to 1,000,000 lbf combined loading	Up to 600,000 lbf combined loading
Bumping	Туре	4 x Triplex 1600 BHP Pumps	3 x Triplex 1200 BHP Pumps	4 x Triplex 1200 BHP Pumps	2 x Triplex 600 BHP Pumps	2 x Triplex 600 BHP Pumps
Pumping	Capacity	>18 bbls/min @7,500 psi	>18 bbls/min @7,500 psi	>18 bbls/min @5,000 psi	11 bbls/min @3,000 psi	11 bbls/min @3,000 psi



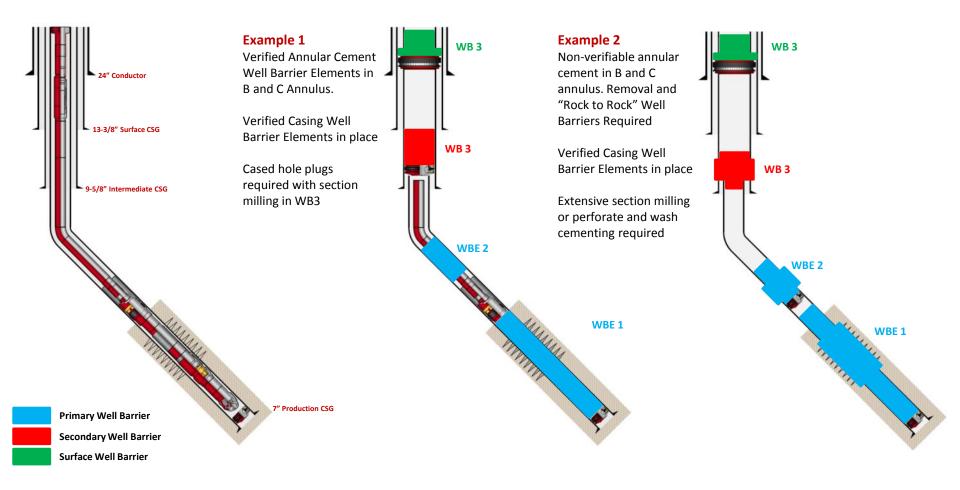
Discreet vs Integrated vs Rigless – Crew Approaches


	E/Wire/Slickline	Tubular Running	Pumping	Cementation	Fishing
Discreet Services	* * * * * * * * *	* * * * * * * *	ŤŤ	Г Г	М М
Integrated Services Reduction in Crew POB	ŢŢŢŢŢ	n n n	n n	r r	r T
Rigless Services Integrated Multi-Skilled Rigless Crew	n n n n n	† † † †	n n	n n	ŗ



Well Performance Times

Cumulative Performance Times vs Initial Time


SIMPLIFIED SERIES

Viability for Operations?

Driven by what is happening downstairs?

Example 1

1x squeezed cement plug3x cased hole plugs7" casing cutting and recovery9-5/8" window milling (25 ft)

Required Surface Equipment

Rigless or Light Intervention Equipment

Pressure Control Equipment Axial Hoisting – Casing Jack Well Servicing Pump Wireline PCE and Toolstrings

Example 2

3x Formation to Formation Plug
1x cased hole plug
Lower Completion Pilot Milling
7" Casing Section Milling (70 ft window)
7" Casing Section Under reaming (70 ft window)
7" Casing cutting and recovery
9-5/8" Casing Section Milling (70 ft window)
9-5/8" Casing Section Under reaming (70 ft window)
9-5/8" Section Milling (25 ft)

Required Surface Equipment Well Construction Drilling Equipment

Drilling Equipment Structure and Drilling Support Module

Deviated well @ 72.5 degrees inclination in 7" Production Casing @ 8,400 ft MD

Summary

- 14 x 49.36 lb/ft Collars 69 kips
- 800 ft + of BHA
- S-135 Gr Drill Pipe with High Torque Tool Joints
- Surface Hoisting, cocking and handling of Drilling Jars
- 3x connection types (Tong Re-dressing Req.)

Challenges

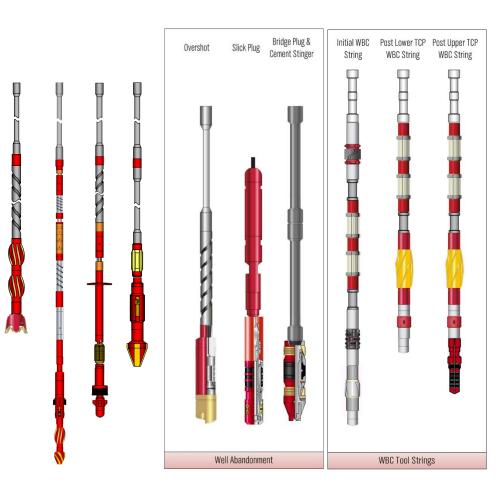
- Well Control
- Hydraulic requirements conveyed via small ID Drill Pipe
- Surface handling of drill collars (4-7/8" x 30ft)
- Rotary Shoulder Connection Make Up/Brake Up Joint Integrity
- Surface Torque Rotary Table, Power Swivel or Top Drive?
 - Rotary Table 22f ft.lbs @ 90 RPM
 - Power Swivel 12k ft.lbs @ 160 RPM (8k ft.lbs @ 120 RPM)
 - Top Drive 21k ft.lbs @ 90 RPM (16k ft.lbs @ 120 RPM)
- Swarf handling

Sample BHAs Used in a Well

Wellbore Clean Up

- Casing Scraper
- Jetting and fluid conditioning tools

Plug Running Tools


- Cement Retainers
- Retrievable Bridge Plugs
- Suspension Packers

Fishing Tools

- Overshots
- Rotary Casing Cutters
- Casing Spears
- Rotary Shoe Mills
- Pilot Mills
- Section Mills

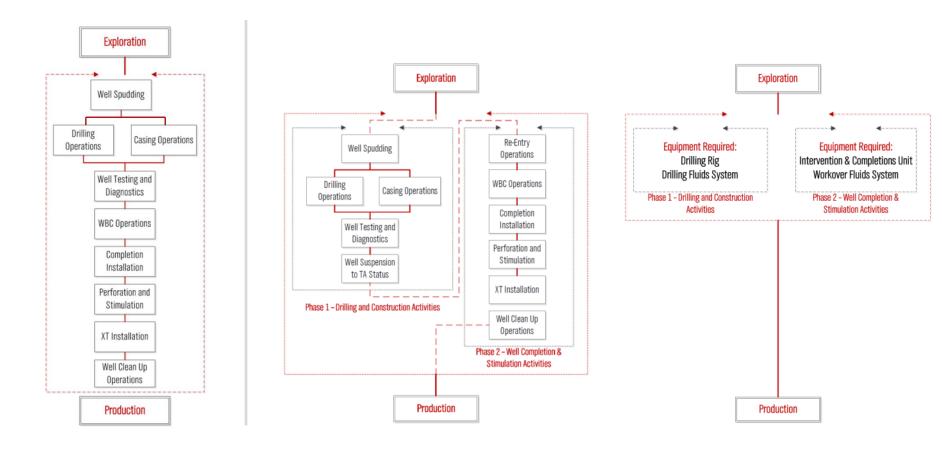
In addition to Casing Recovered

• 7" Thru 30"

Casing Tong Integration Options – Modular Trims

OFFSHORE TECHNOLOGY CONFERENCE 1-4 May 2017 \\ Houston, Texas, USA \\ NRG Park 2017.otcnet.org

 OTC-27607 | Life of Field Cost Reduction Strategy: The Deployment of Facilitating Intervention Technologies for Well Construction and Deconstruction | S A Canny & G Foubister



Defining Requirements for "Rigless" Rig

Example Downhole Operations Statement of Requirements

"If the SOR presents significantly differing requirements, batched operations in a segregated scope can be executed"

A Study was performed to determine the Surface Equipment Requirements, inclusive of the following key parameters:

Platforms

 An assumed platform example with overview of the structure, construction, allowable loadings and available services

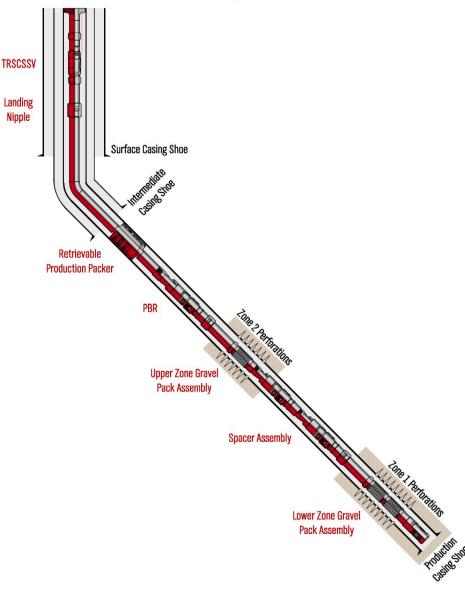
Well Operations

 The well operations determined by the operations procedure and well example are presented, with the tool strings and completion equipment

SIMOPS and Offline Activities

 Critical to the selection of technology, the ability to concurrently rig up or perform SIMOPS or activities offline can allow significant cost savings

Reservoir

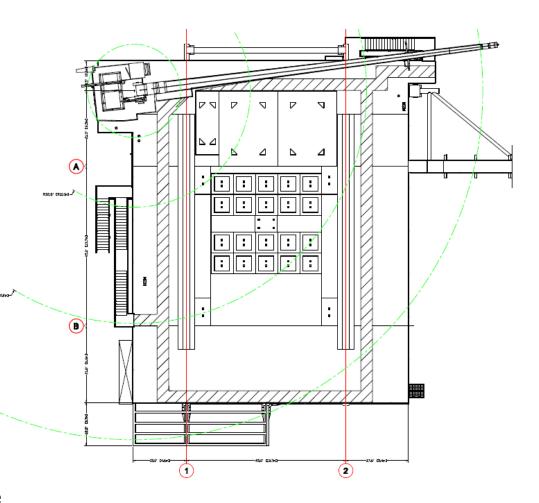

- Normally Pressurised Gas Reservoir
- Dual Target zones, with further shallow targets identified for mid life re-completion and sidetrack upon reservoir depletion

Casing Plan

- 13-3%" x 9-5%" x 7" with 3-1/2" Completion tubing
- Sand Control Completion
- Deep Sidetrack intended in 7" Production casing in the case of well integrity issues

Completion

 Retrievable Production Packer to recover during workover

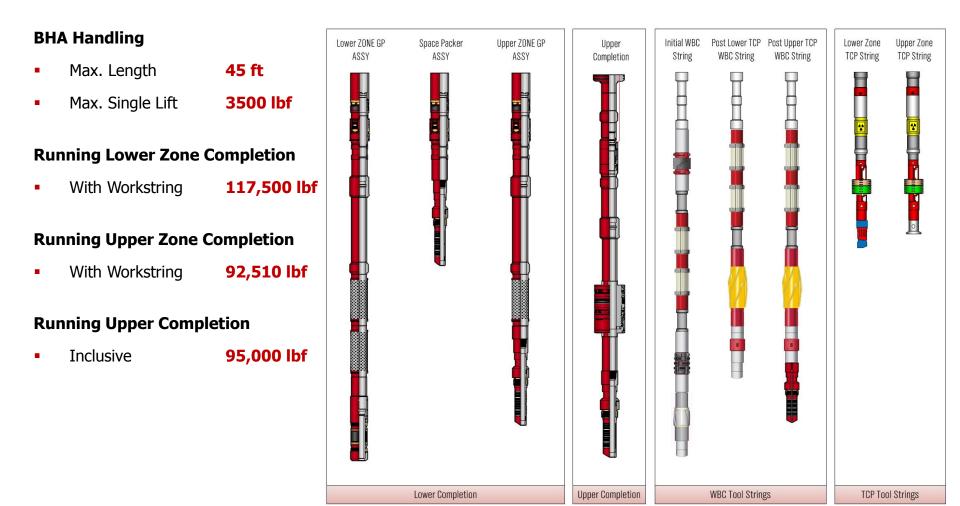


Description	Value
Water Depth	490 ft
No. Well Slots	20
Max. Variable Load	3,000,000 lbf
Max. Deck Loading	2,500 ft ²
Max. Crane Load	28,000 lbf
Hazardous Area Classification	API RP 500

Metocean Data Sample							
ltem (m/e)		Return	Period				
ltem (m/s)	1	10	50	100			
Extreme Wind Speed (m/s)	19	22	24	26			
Extreme Wave Height (m)	4.6	5.4	6.0	6.2			
Notes: Extreme Winds @ 10m above	MSL –	Not Cy	clone	-			

- No Air Feed
- No Auxiliary Electrical Feed Available
- No Water Feed Available
- No Production Separation System Entry Available

	Operations	Required Concurrent Functionality					
No.	Step	Pressure Control	Hoisting	Rotation	Pumping	Other Conveyance	
1	Well Re-Entry and Kill String Removal	YES	YES	YES	YES	YES	
2	Initial WBC Run	YES	YES	YES	YES	NO	
3	Set Sump Packer	YES	NO	NO	NO	YES	
4	TCP Perforation for Lower Zone	YES	YES	YES	YES	YES	
5	Post TCP WBC Run	YES	YES	YES	YES	NO	
6	Run Lower Zone Gravel Pack Assembly	YES	YES	YES	YES	NO	
7	Injectivity Testing and Acidizing	YES	NO	NO	YES	NO	
8	Step Test and Frac	YES	NO	NO	NO*	YES	
9	Gravel Pack Treatment and Logging	YES	YES	YES	YES	NO	
10	Run Spacer Packer Assembly	YES	YES	YES	YES	NO	
11	Set Bridge Plug	YES	YES	YES	YES	NO	
12	TCP Perforation for Upper Zone	YES	YES	YES	YES	YES	
13	Retrieve Bridge Plug	YES	YES	YES	YES	NO	
14	Post TCP WBC Run	YES	YES	YES	YES	NO	
15	Run Upper Zone Gravel Pack Assembly	YES	YES	YES	YES	NO	
16	Injectivity Testing and Acidizing	YES	NO	NO	YES	NO	
17	Step Test and Frac	YES	NO	NO	NO*	NO	
18	Gravel Pack Treatment	YES	YES	YES	YES	YES	
19	Run Upper Completion	YES	YES	YES	YES	YES	



	Other Conveyance Requirements					Other Conveyance Requirements				
No.	Step	Wireline	Coiled Tubing	Comments	No.	Step	Wireline	Coiled Tubing	Comments	
1	Well Re-Entry and Kill String Removal	Electric line	Not Expected Operation		11	Set Bridge Plug	Not Expected Operation	Not Expected Operation		
2	Initial WBC Run	Not Expected Operation	Not Expected Operation		12	TCP Perforation for Upper Zone	Electric line	Not Expected Operation		
3	Set Sump Packer	Electric Line	Not Expected Operation		13	Retrieve Bridge Plug	Not Expected Operation	Not Expected Operation		
4	TCP Perforation for Lower Zone	Electric line	Not Expected Operation	Rig Up between Jointed Pipe Operations	14	Post TCP WBC Run	Not Expected Operation	Not Expected Operation		
5	Post TCP WBC Run	Not Expected Operation	Not Expected Operation		15	Run Upper Zone Gravel Pack Assembly	Not Expected Operation	Not Expected Operation		
6	Run Lower Zone Gravel Pack Assembly	Not Expected Operation	Not Expected Operation		16	Injectivity Testing and Acidizing	Not Expected Operation	Not Expected Operation		
7	Injectivity Testing and Acidizing	Not Expected Operation	Not Expected Operation		17	Step Test and Frac	Not Expected Operation	Not Expected Operation		
8	Step Test and Frac	Not Expected Operation	Not Expected Operation		18	Gravel Pack Treatment	Electric Line	Not Expected Operation	Logging Operations Inside Workstring	
9	Gravel Pack Treatment	Electric Line	Not Expected Operation	Logging Operations Inside Workstring	19	Run Upper Completion	Electric Line	Not Expected Operation		
10	Run Spacer Packer Assembly	Not Expected Operation	Not Expected Operation		Maximum Requirements		Electric Line PCE and Equipment	Not Expected Operation, Provision for Contingency	Rigging of Electric Line Operations Concurrently with Jointed Pipe RIH	
					Note	S:				

Tripping Sensitivity Study

	F	ressur	e Contr	ol	Equipmen	t				
	BOP Ram Configura				1	4.010				
-	Element Nominal Size		- API C	ass		Drilling Red	corder			
Maximum Requirements	BSR VBR(s) Annular		2-1/8" -	Per API Bore "-5-½", 2-3/" - 5-½" Per API Bore			Class 3-A1-R3 13-%", 5K			
		Hoi	sting E	qui	pment					
	Workstri	ıg		BH	HA	A 11 1		Max.	Max.	Lav
	Longth	End Load*	Length	ı	End Load*	Combined End Load*		ingle ength	Single Hoist	Back Req.
Maximum Requirements	89,110	bf	9	5,00	00 lbf	117,115 lbf	4	15 ft	3,500 lbf	YES
	S	Surface	Rotatio	on E	Equipmen	t	-			
	Rotary Shoulder Connections RIH/POOH									
	Connection	Max	Torque		Vertical Speed	Rotation		Static Rotation		
Maximum Requirements	10,5	00 ft.lbf		1	L50 ft/min	75 RPM				
		Pun	nping E	qui	ipment					
	Circulation (Operation	s Max.		Pressur	re Testing			Commont	
	Flow Rate	Max. F	Pressure	Ma	ax. Pressure	Hold Perio	t		Comments	>
Maximum Requirements	10 bbls/min	3,00	00 psi		7,000 psi 10 minutes		5			
		Otl	her Con	ivey	yance					
	Wireline				Coiled	d Tubing		Comments		
Maximum Requirements	Electric L Equ	ine PCE a ipment	and	Not Expected Operation, Provision for Contingency				Rigging of Electric Line Operations Concurrently with Jointed Pipe RIH		

Surface Equipment Specification Critical Performance Elements

- Hoisting System
- Tubular/BHA Handling
- Tubular Transfer from Support Barge
- Workover Pressure Control Management and Distribution
- Wellslot Movement Activities
- Offline Activities
- Thru-Unit Operations

Hoisting operations were 12.9% of the *Workover data example*, project duration

Workstring Tripping Speed Sensitivity Study								
	Operations		Trip		Time, per design speed			
No.	Step	Trip In MD	Trip Out MD	Workstring	700ft/hr	1300 ft/hr	1600 ft/hr	
2	Initial WBC Run	7,000 ft	N/A*	3-½" DP	10 hr	5.3 hr	4.3 hr	
4	TCP Perforation for Lower Zone	6,900 ft	6,900 ft	3-½" DP	19.7 hr	10.6 hr	8.6 hr	
5	Post TCP WBC Run	7,000 ft	N/A*	3-1⁄2" DP	10 hr	5.3 hr	4.3 hr	
11	Set Bridge Plug	5,500 ft	5,500 ft	3-1⁄2" DP	15.7 hr	8.4 hr	6.8 hr	
12	TCP Perforation for Upper Zone	5,500 ft	5,500 ft	3-1⁄2" DP	15.7 hr	8.4 hr	6.8 hr	
13	Retrieve Bridge Plug	5,500 ft	5,500 ft	3-½" DP	15.7 hr	8.4 hr	6.8 hr	
14	Post TCP WBC Run	5,050 ft	N/A*	3-1⁄2" DP	7.2 hr	3.8 hr	3.1 hr	
	Cumulative ⁻	Time			94 hr	50.2 hr	40.7 hr	
	Rig Days		2.2 days	0.4 days	-			
Notes: *Determined by operation parameters and speed								

Drilling Technology & Intervention Technology

- Equipment Capital Cost
- Daily Rental Cost
- Maintenance Cost
- POB Requirements
- Certification Cost
- Integration Costs


Cost per Well

Paran	neter	Typ. Jack Up Rig	Typ. Semi-Tender Rig	Typ. Modular Drilling Unit	Typ. Pulling Unit	Typ. Hydraulic Workover Unit
	Drive	Drawworks, Traveling Block	Drawworks, Traveling Block	Rack and Pinion Mast, Traveling Block	Hydraulic Mast, Rig Assist Jack	Casing Jack
	Capacity	> 2,100,000 lbf	> 1,000,000 lbf	800,000 lbf	Mast - 221,000 lbf Rig Assist - 600,000 lbf	460,000 lbf
Hoisting	HP	> 5,750	> 3,000	1,000	430	600
	Setback	Yes	Yes	No	Yes	No
	Design Speed 1,800 ft/hr		1,400 ft/hr	1,200 ft/hr	1,500 ft/hr	800 ft/hr
Drive		Top Drive	Top Drive	Top Drive	Power Swivel Top Drive	Rotary Table
Rotation	Capacity	Up to 120,000 lb.ft	Up to 60,000 lb.ft	Up to 60,000 lb.ft	12,000 lb.ft or 21,000 lb.ft	22,000 lb.ft
	Туре	Automated Iron Derrickman	Work board in Derrick		Gantry System	
Setback	Capacity	> 2,250,000 lbf RII Triple or Quad Stands	> 750,000 lbf Rll Stands 5.5" 19# 19,740ft		160,000 lbf R II 3.5″ 13.3# 10,900 ft R III 3.5″ 9.2# 17,380 ft	
Sub- Structure	Capacity	> 28,000,000 lbf combined loading	> 4,000,000 lbf combined loading	> 3,200,000 lbf combined loading	Up to 1,000,000 lbf combined loading	Up to 600,000 lbf combined loading
Pumping	Туре	4 x Triplex 1600 BHP Pumps	3 x Triplex 1200 BHP Pumps	4 x Triplex 1200 BHP Pumps	2 x Triplex 600 BHP Pumps	2 x Triplex 600 BHP Pumps
	Capacity	>18 bbls/min @7,500 psi	>18 bbls/min @7,500 psi	>18 bbls/min @5,000 psi	11 bbls/min @3,000 psi	11 bbls/min @3,000 psi

New Market Entry Northern Europe

Market Entry and Certification

What entry approach in a young market?

"It is North Sea Certified?"

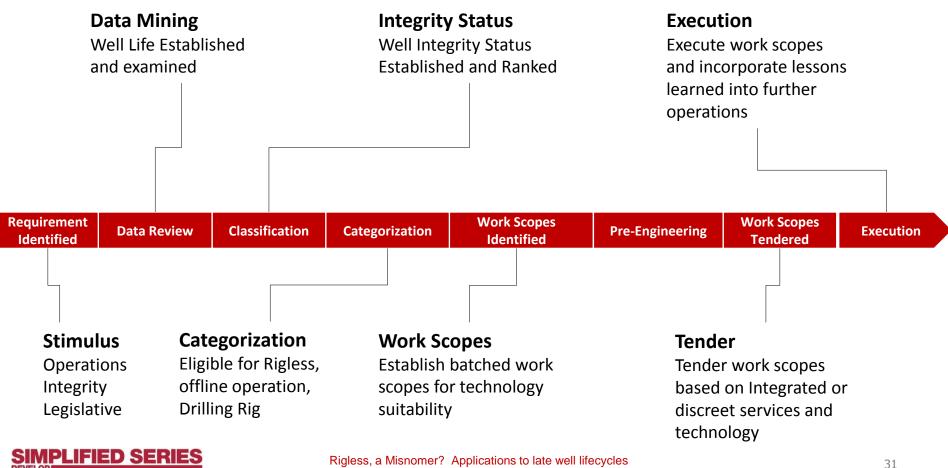
- North Sea Certification does not yet exist in an RP, Standard or Guideline
- Various options, combinations and methods to gain partial certification exist
- No single system level approach adopted by the industry
- Type Approval is attractive for 3rd party verification

"Normative and Expected Compliance"

- API RPs and STDs
- NORSOK
- ABS

Regional Legislation Applicable to UKCS

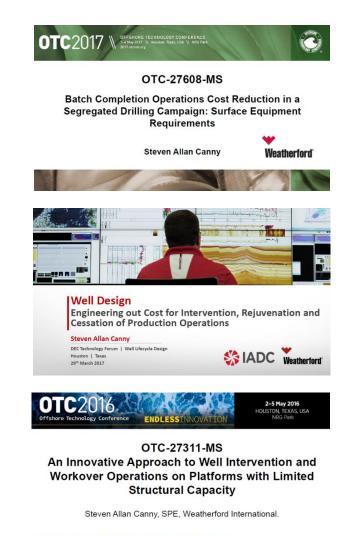
- ATEX
- CE Marking w/EHSRs
- PUWER
- LOLER


Document	Version	Description / Title	Status
API 4F	4th Edt	Specification for Drilling and Well Servicing Structures	Applicable
API RP 2A WSD	22 Edt	Planning, designing, and constructing fixed offshore platforms - Working stress design	Applicable
NORSOK D-001	3rd Edt	Drilling Facilities	Applicable
NORSOK D-002	Rev 2	Well Intervention Equipment	Applicable
NORSOK D-010	Rev 4	Well integrity in drilling and well operations	Applicable
NORSOK N-004	3rd Edt	Design of Steel Structures	Applicable
NORSOK Z-013	Rev 2	Risk and Emergency Preparedness Analysis	Applicable
NORSOK Z-015	Rev 4	Temporary Equipment	Applicable
NORSOK M-001	Rev 3	Materials Selection	Applicable
NORSOK M-101	Rev 5	Structural Steel Fabrication	Applicable
NORSOK S-001	4th Edt	Technical Safety	Applicable
NORSOK S-002	Rev 4	Working environment	Applicable
NORSOK S-005	Rev 1	Machinery, Working environment analyses and documentation	Applicable
DNV 2.7-1	Apr-16	Offshore Containers	Applicable
DNV 2.7-3	May-11	Portable Offhsore Units	Applicable
DNV RP A203	Jul-11	Qualificaition of New Technology	Applicable

TWORK

Data and Classification to Align Equipment Specification to Scopes of Work is Key

4th October 2017 | Aberdeen, United Kingdom



DEVELOP

NETWORK INSPIRE

Further Reading

32