

human energy[®]

SPE Seismic 2017

Addressing seismic challenges on Rosebank through targeted use of technology

11th May 2017

© 2017 Chevron North Sea Limited | Company Confidential

Outline

- Introduction
- Regional Geology and Play Concept
- Seismic Challenges
- 3D Streamer Data
- Acquisition Modelling
- Ocean Bottom Node Seismic Data
 - Velocity Modelling
 - Spectral Decomposition
 - Spectral Enhancement
 - Inversion
- Conclusions

Rosebank Location - Faroe-Shetland Basin

- Confluence of volcanic and sedimentary systems:
 - Easterly advancing volcanic system of extrusive basalts and volcaniclastics
 - Contemporaneous Flett Delta siliciclastic system to the SSW prograding in a NNE orientation

Faroes Shetland Stratigraphy: Intra- and Sub-Volcanic Reservoirs

Rosebank Seismic Challenges

- Complex overburden
 - WB and near WB multiple noise train over target
 - Scattering due to sand injectites
- Sub and Intra basalt imaging
 - Heterogeneous volcanics interval (scattering and intrinsic attenuation)
 - Poor seismic penetration sub-basalt
- Reservoir thickness at edge of detectability
- Difficult to separate seismic response of sands/shales/volcaniclastics

1996-2008 - 3D Streamer Data

- Numerous efforts to reprocess the data were undertaken prior to and after the discovery well
- Lead to an improved image but were limited by the difficulties of merging several surveys and sub-optimal acquisition parameters for intra and sub-basalt imaging

3D Kirchhoff PSDM (Veritas, 2003) Note: Processing Optimised for near-volcanics

2008-9 Seismic Modelling & Feasibility Studies

Example survey types: Single, Multi-,Wide and Rich Azimuth

- Conducted feasibility studies to enable technology selection
 - 2.5D Finite Difference Modelling and Processing (CGGVeritas) used to assess different acquisition methods
 - Extensive 4D Study; Rock Physics; Core Analysis, etc.
- OBN technology showed best results and was chosen as the preferred method.
 - Best Structural Image
 - Highest Bandwidth
 - Optimal Multiple Attenuation
 - Rich Azimuths & Best Illumination
 - Converted waves for Reservoir Characterisation
 - Best 4D Baseline (best repeatability)

2009 VSP Program Multi-Azimuth Walk-Away VSP

Chevroi

- Objectives:
 - Determine anisotropy for future processing
 - Investigate azimuthal variation
 - Increase resolution in target interval
 - Include learning's for survey planning
- Key Results:
 - Acquired 6x10km Walk-away VSP lines, Vertical Incidence VSP and Walkaround VSP
 - Higher frequencies & azimuthal dependence
 - Anisotropy available for processing of new OBN
 - Results supported OBN decision

2010 and 2011: Stage 1 and 2 OBN Surveys

- Two stage acquisition approach to confirm benefits of OBN technology
 - Stage 1 May-Aug 2010 65 km2 node 260 km2 shot area
 - Stage 2 Apr-Aug 2011 109 km2 node 335 km2 shot area
- The improved demultiple, full azimuth illumination, and increased low frequency content have all helped to increase the S/N level at the target with a much improved tie to the well synthetics

OBN Seismic Imaging: Velocity Modelling - Volcanic velocities

Proprietary to the Rosebank Joint Venture

Chevron

Well Velocities From Sonic Logs

© 2017 Chevron North Sea Limited | Company Confidential

OBN Seismic Imaging Velocity Modelling – Enhanced structural definition

OBN Inline

Yellow Event - TWT Structure Map

NW

Peak, Black +ve Al contrast

OBN Seismic Imaging Velocity Modelling – Enhanced structural definition

Proprietary to the Rosebank Joint Venture

Overburden: Spectral Decomposition

Proprietary to the Rosebank Joint Venture

- RGB (Red-Green-Blue) blend of 3 magnitude volumes (17Hz/11Hz/7Hz)
- Northern area characterized by strong 7 Hz signal (Blue)
- South-western area dominated by 11 Hz signal (Green)
- Central area shows a mixed seismic signal
- Spatial geometry of seismic response point towards individual gross flow packages
- Flow 1 = 75% basaltic, Flow 2 = 75% volcaniclastic

Overburden: Spectral Enhancement

Reservoir Characterisation: Inversion - interpreting sand vs non-reservoir facies

Acoustic vs Elastic Impedance

Well Data Coloured by Facies Acoustic vs Elastic Impedance

Seismic Data Coloured by Sample Density

Chevron	

Facies	
Background shale	
Braided sand bars	
Inter-bar sands	
Mouth Bars	
Overbank	
Proximal Pro-delta	
Distal Pro-delta Silts	
Coarse Volcaniclastic	
Fine Volcaniclastic	
Coarse Volcanic	
Basalt	

Sand Probability Map

Proprietary to the Rosebank Joint Venture

Conclusions

- Rosebank reservoir unique in subsurface context
 - Significant technical challenges
- Technologies have been screened and selected based on their ability to address these challenges
- Significant image uplift from high quality OBN data acquisition
 - OBN has provided a legacy dataset for the asset
 - Improved structural definition across the Rosebank prospect
 - Quantification of volcanic velocities and improved imaging leading to refined velocity models.
 - Identification of individual basaltic flow units using spectral decomposition techniques.
 - Increased confidence in sand distribution in inter-well space for development planning
- Improve subsurface decision making
 - Better definition of in-place and resource distributions
 - Potential to reduce costs through optimal placement of wells

Acknowledgements

Rosebank Co-Venturers:

- Chevron North Sea Limited
- Suncor Energy UK Limited
- Siccar Point Energy Limited
- DONG E&P (UK) Limited

