

BP North Sea EOR lessons learned

Euan Duncan North Sea Discipline Lead Reservoir Engineer

Enhanced Oil Recovery BP North Sea lessons learned

- 1. Current Context
- 2. History
 - A few pictures
 - Enablers & Lessons
- 3. Current projects
- 4. Future
 - 1. Technology
 - 2. Unlocking options

Enhanced Oil Recovery BP North Sea lessons learned

- 1. North Sea context
- 2. History
 - A few pictures
 - Enablers & Lessons
- 3. Current projects
- 4. Future
 - 1. Technology
 - 2. Unlocking options

Themes here are:

- EOR works in the subsurface & tends to grow with time
- Size of prize, access to infrastructure & injectant supply are critical
- Confidence in process is critical

so Good planning & Collaboration are potential EOR enablers

Context North Sea Reserves & Resources (billion boe)

bp bp

Delivering EOR

 Recovery Efficiency can be increased by making improvements across four levers:

Delivering EOR

 Recovery Efficiency can be increased by making improvements across four levers:

North Sea EOR Project History

BP EOR Focus Areas in North Sea Field locations with current & future projects

BP North Sea Region

I oSal is a trademark of

May 2011, SIS 112928530

Miller Associated Gas Re-injection

Miller Associated Gas Injection

1998 Miller AGR Critical Enablers • BP Alaska WAG 2000 • Good reservoir sweep • WAG subsurface 2002 • Miller AGR • Mage and the second reservoir sweep 2002 • Modelling workflow 2004 • Too late 2005 • Modelling workflow 2006 • Modelling workflow 2007 • Modelling workflow 2008 • Modelling workflow 2010 • Mage and the second reservoir second reservoir 2011 • Modelling workflow 2012 • Mage and the second reservoir 2014 • Mage and the second reservoir 2016 • Mage and the second reservoir 2018 • Modelling workflow

Miller Associated Gas Injection

Miller CO₂ project

Miller CO₂ Injection

Ula behind flood front pilot

2009

- New WAG compressor installed
- 2 WAG injectors in 1999 to 4 in 2005
- Increased gas capacity & further WAG wells in

Surveillance Data – behind flood front pilot

2020-

Surveillance Data – behind flood front pilot

Ula future

WAG8

A09A

A18

A12A

A04

A07C

WAGIS

WAG16

WAG18

Ula WAG Scheme

Critical Enablers

- Injectant supply: Gas export lost when Cod field abandoned
- Miller compression experience
- Alaska experience

Lessons Learned:

- Gas injector integrity
- Timing WAG bank is difficult – Needed surveillance to understand

Magnus WAG Scheme

2020-

- New WAG compressor installed
- Gas import from stranded West of Shetland gas

Magnus Understanding the WAG target

20

WAG Benchmarking with Industry Data

 Magnus panels & Ula overall performance is better than most of the industry benchmarks

Magnus WAG

Critical Enablers

- BP Alaska WAG experience
- Ula & Miller
 compression
- WoS Stranded gas

Lessons Learned:

- Technical Experience
- Injectant supply critical
- System complexity and uptime in mature assets challenging
- Fiscal relief beneficial

Magnus WAG

Lessons learned from four EOR projects

Subsurface Delivery of EOR

Subsurface Workflow knowledge Surveillance: Seismic, Sorm & Sorw etc

Lessons learned from four EOR projects

Future Projects

Clair Ridge LoSal® EOR

Critical Enablers

- BP Alaska LoSal® EOR experience
- Big STOIIP
- Other benefits (scale & H2S)

Lessons Learned:

- Align partnership
- Need big development for standalone LoSal® EOR ... collaboration?

Schiehallion Polymer

Effect of polymer concentration on shear viscosity (3630S in 1% NaCl at 25 °C).

Schiehallion Polymer

Effect of polymer concentration on shear viscosity (3630S in 1% NaCl at 25 °C).

Schiehallion polymer lessons

Critical Enablers

- Understand reservoir
- Large STOIIP ... collaboration?
- Partnership Knowledge

Lessons Learned:

- Polymer delivery challenge:
 - manufacture, logistics, mixing, degradation needs careful planning
- Significant upsides exists vs current technology

So, what are we doing now?

Brackish water or losal

Breacais Iosal Lower Breakish

VACA

Technology

bp

- 1. Developing new Water based IOR technologies:
 - Pore scale
 - Losal® EOR plant
- 2. Facilities:
 - Integrity management, Field life extension, PoB efficiency
 - Plant & well uptime
- 3. Wells
 - Cost
 - Surveillance & conformance control

Screening process leading to Project Entry

bp

OUTPUTS

High level screening

	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6	Field 7	Field 8	Field 9	Field 10	Field 11	Field 12	Field 13	Field 14	Field 15
N2/Flue	R	R	R	Y	Y	Y	R	R	R	R	R	R	Y	R	R
H/C Miscible	R	G	R	G	G	G	G	Y	R	R	R	R	G	G	R
CO2 Miscible	R	G	R	G	G	G	G	Y	R	R	Y	Y	G	G	R
Immiscible	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Waterflood	G	G	G	R	G	Y	G	G	Y	Y	G	G	G	G	G
LoSal	G	G	Y	R	G	R	Y	G	Y	Y	G	G	G	G	G
Brightwater	G	G	R	R	G	R	R	G	Y	Y	G	G	G	G	G
Alkaline (Caustic)	Y	R	R	R	R	R	R	R	G	G	G	G	Y	R	Y
Surfactant	Y	R	R	R	R	R	R	R	Y	G	G	G	G	R	Y
Polymer	R	R	R	R	R	R	R	R	Y	G	G	G	Y	R	R
Alkaline-Surfactant	Y	R	R	R	R	R	R	R	Y	G	G	G	Y	R	Y
Alkaline-Polymer	R	R	R	R	R	R	R	R	Y	G	G	G	Y	R	R
Polymer-Surfactant	R	R	R	R	R	R	R	R	Y	G	G	G	Y	R	R
A-S-Polymer	R	R	R	R	R	R	R	R	Y	G	G	G	R	R	R
Viscous: CHOPS	Y	R	R	R	R	R	R	R	Y	Y	Y	Y	R	R	Y
Viscous: Air (Combustion)	G	R	Y	R	Y	R	R	Y	R	G	G	G	Y	Y	G
Viscous: Steam	Y	R	R	R	R	R	R	R	R	Y	R	R	R	R	R
Brine data	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	N	N
Mid agos harrals h	, field by er	tion time													
wild case parreis p	y field by of	btion type													
	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6	Field 7	Field 8	Field 9	Field 10	Field 11	Field 12	Field 13	Field 14	Field 15
N2/Flue															
H/C Miscible															
CO2 Miscible															
Immiscible															
Waterflood															
LoSal															
Brightwater															
Alkaline (Caustic)															
Surfactant															
Polymer															
Alkaline-Surfactant															
Alkaline-Polymer															
Polymer-Surfactant															
A-S-Polymer															
Viscous: CHOPS															
Viscous: Air (Combustion)															
Viscous: Steam	1														

Standardise Modelling Workflow

1. Fine Scale Mechanistic model with rock curves

2. Fine Scale Geological element model with rock curves

3. Fine Scale Depositional system Geological model with upscaled to pseudos

4. Full field model with areal pseudos & potentially EOR process pseudos

Basal channe conglomerate

Basic Elementary Channel Componen

Upper fill of ax

Upscale rel perms if neccessary

Screening Process: Summary of EOR project status

• Communication tools to understand status

Field	EOR Screening	SCAL	Production Forecast	Injectanat Supply	Facilities Design	Project Economics	Chance of Success	Comments
Field 1 EOR Optimsation								
Field 2 Polymer								
Field 2 Optimisation								
Field 3 Polymer								
Field 4 EOR						?		
Field 5 <i>Losal</i>								
Field 6 Hisal						?		
Field 7 EOR optimisation								
Field 8 Hisal						?		
Field 5 upsides						?		

Green	Complete	Complete	Complete	Complete	Good NPV	>50%
Yellow	In Progress	In Progress	In Progress	In Progress	Marginal	10-50%
Red	Not Started	Not Started	Not Started	Not Started N	legative NP\	<10%

Building Confidence : Pyramid of proof

INTEGRATION

EOR challenges & possible solutions

Key Success Factors	Challenges	Solutions					
Low Cost Injectant	 Source Cost of supply or purchase 	 Engage with CCSA to develop CO₂ EOR / CCS strategy. Collaboration supply chain shared facilities (eg ITF call) 					
Subsurface Understanding	 Awareness of EOR. Understanding mechanisms Confidence 	 DECC PILOT (screening, workshops, coreflood planning) "Pyramid of Proof". 					
Facilities	Lack of space / weight	 ITF: Low Salinity facilities for brownfields. Include capacity for EOR within BoD's for new developments (FDP consent). 					
Economics	 "High" front-end & increased OPEX costs Time to CoP. Pace!! 	 "Clusters" formed for knowledge/cost sharing EOR hopper awareness. Potential for fiscal relief. 					

Lessons learned from four EOR projects

Lessons learned from BP EOR projects

Subsurface Delivery of EOR

Subsurface Workflow knowledge Surveillance: Seismic, Sorm & Sorw etc

Practical EOR Delivery

Well integrity

- Injectant supply

- Understanding changes

to plant process critical

- Fiscal Relief

- Multiple phases of EOR

BP EOR Focus Areas in North Sea Field locations with current & future projects

May 2011, SIS 112928530

End

Summary: Magnus Development phases

Evolution of Magnus Field Production Profiles

•MSM only WF development

Ula WAG Increment

Schiehallion Q204 Polymer

