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Our success as a species lies in something our ancestors did round the campfire, something 
we are doing right here right now: Storytelling. We've always been adept at sharing complex 
ideas, and we do it through language. 
 
Consider the countless reports, emails, and memos you've written. Each one is a treasure 
trove of analysis and expertise. Imagine scaling this knowledge across an entire company, or 
even an industry—decades of collective knowledge, experience and wisdom. It's a vast 
resource, but accessing it effectively remains a challenge, even with tools like keyword or 
fuzzy search.  
 
 

  



 

As someone who is passionate about language, is endlessly curious, and with a background 
in exploration drilling, I was drawn to exploring the potential for language models in the 
energy industry. When ChatGPT gained popularity, I embarked on a personal research 
project using Equinor’s open sourced Volve dataset. My goal was to create an information 
retrieval system that could extract valuable insights from this precious repository of drilling 
data. 
 
 

Video Link:  https://youtu.be/UO1tQ4SfgKQ?si=HfxCTb5C8iWM95cq



 

Human behavior and communication is intriguing isn’t it. That's why I’m drawn to natural 
language processing (NLP. When ChatGPT was released, I was initially very excited, but I feel 
we largely use it incorrectly.  
 
Large Language Models aren't search engines. They're language calculators that predict the 
most likely next word based on patterns in their training data. This approach has limitations. 
For instance, the training data becomes outdated as soon as training is complete, LLMs often 
lack contextual understanding, Additionally, they can generate highly convincing but 
inaccurate information, you could say LLM’s are like some politicians you might be familiar 
with.  
 
Instead of treating them as a reliable information repository, I believe we should view them 
as an interface to a recommendation engine. 
 
 

  



 

Making sure the system could access live relevant data, was critical. This would help 
minimize the risk of generating inaccurate or misleading responses. Using the LLM to 
construct database queries was too error prone, time to explore a more robust approach: 
Retrieval Augmented Generation (RAG).  
 
This method leverages semantic search to retrieve relevant information from a knowledge 
base, enhancing the LLM's ability to generate informative and contextually appropriate 
responses. 
 
How many people are familiar with RAG?  
 
Transformer models, like those used in RAG, have two main components: an encoder and a 
decoder. The encoder part captures context within text by converting it into a list of 
numbers,  hundreds even thousands of places long, depending on the model. These number 
lists, known as embeddings or vectors, can then be stored in a Vector Database. 
 
RAG works by comparing these vectors to find the most similar ones. Think of it like a 
coordinates on a map. We could say that Aberdeen and Dundee are more similar to one 
another than they are to Riyadh by dint of geographical proximity. RAG does something 
similar, but instead of plotting places on a 2D map, it plots them in a much higher-
dimensional space.  
 
 

  



 

A basic RAG process looks something like this. There is part of this diagram that I haven’t yet 
mentioned, Guardrails. Guardrails are the part of the system that ensures an LLM-based tool 
behaves predictably and reliably, a safety net if you will. You can design something yourself 
or use an off the shelf Framework like NeMo or Guardrails.ai. 
 
Back to our RAG process, A user passes a query to the system. The query gets screened by 
the guardrails to ensure it's appropriate and within the system's capabilities. The query is 
converted into vector and retrieves data from the vector database. The original query is then 
augmented with the most relevant information returned from the Vector Database, giving 
the LLM greater context, allowing it to generate a more accurate response. The response 
then goes back through the guardrails to ensure it's safe and on point. 
 
Something we need to consider prior to adding data to the vector database, is how we split 
the documents, a chunking strategy. When splitting our documents into chunks, we want to 
capture the meaning clearly. Opting for sentence-level chunks might miss context, while 
large paragraphs can introduce noise or dilute the importance of specific words or phrases. 
 
To address this, I used a technique called context-aware chunking. It leverages a document’s 
linguistic structure to create meaningful and relevant chunks for comparison. These 
vectorized chunks are used for targeted search, but the full paragraph is returned for greater 
context when the LLM is generating a response. 
 
What have we achieved? A powerful semantic search and summarisation system. 
 
Suggested Tools: 
ChromaDB 
Pgvector 
Pinecone 
Weviate 
LangChain 
NLTK 
Spacy  



 

While this basic RAG system is a valuable tool, it's important to acknowledge its limitations. 
One significant issue is that AI systems inevitably lose information from the original text. This 
loss can manifest in various ways, such as the omission of tangential details or the 
diminished significance of specific keywords. 
 
To mitigate these issues, we can implement strategies like Named Entity Recognition. An NER 
model identifies key entities within text, such as people, organizations, locations, or 
products, as illustrated by the example on screen. By training a custom NER model, I had a 
tool to extract more relevant entities like equipment, events, lithology, personnel, and 
datasets. 
 
The extracted entities can then be used to enhance the query process by tagging these 
entities onto metadata when adding vectors to the vector database, along with existing 
metadata like well name, report type, and involved companies. Applying the same process 
to queries, this allows us to filter data based on the presence or absence of specific entities, 
like using a "WHERE" clause in SQL. This extra context improves the accuracy and relevance 
of search results. 
 
Suggested Tools: 
Flair 
Neural Networks 
NLTK 
Spacy 
Stanford NER Tagger 
 
Brat(Browser-Based Rapid Annotation Tool) 
Explosion Prodigy 
Label Studio 
 
Additional Areas to Explore: 
Topic Modelling  



 

Another issue with LLMs is they are inherently stateless, meaning they treat each query 
independently. This was inadequate. I needed the system to remember past interactions and 
use them as context when responding to queries. The system needed short term memory. 
Luckily, that are several great frameworks out there,  I settled on LangChain.  
 
There are several approaches to implementing short term, or conversational, memory. You 
could store the entire conversation history and pass it to the LLM. This offers maximum data 
retention, but it can slow down responses, increase costs and limits interaction length due to 
token/word limits. 
 
Another strategy is to summarise the conversation and pass the summary as context. While 
this reduces word count and allows for longer conversations, it can significantly increase 
costs and reliance on the LLM. 
 
I opted for the Buffer Window method. This approach maintains only the most recent 
interactions, enabling ongoing conversations while keeping costs manageable. However, it 
may result in some loss of context from earlier parts of the conversation. 
 
Suggested tools: 
AutoChain 
Custom Self Build 
LangChain 
LlamaIndex 
Vellum 



 

Not always. 
 
To address vague user queries, we can use Query Expansion, a technique search engines 
have employed for years to deliver smarter results. It uses natural language processing (NLP) 
methods like synonym expansion, for example searching for "car" also brings up results for 
"automobile.“, stemming/lemmatization or using the root of a word, so a search for 
"running" also includes "run”, and user behavior analysis, for example using data from other 
users to help suggest additional terms. 
 
Today, query expansion is more sophisticated, lets discuss two common methods: 
 
Pseudo Relevance Feedback (PRF): This method retrieves the top results, scans them for 
frequently occurring terms (using NER), and adds these to the original query to refine the 
search. However, if the initial results are off-target it could lead to topic drift, while irrelevant 
terms might clutter the query, both of which result in the system returning less relevant 
information. 
 
Large Language Models (LLMs): LLMs infer intent by recognizing subtle cues and context, 
dynamically expanding queries or suggesting variations. This approach excels at 
disambiguating terms and handling diverse topics, but it can be resource-intensive, slow, and 
prone to adding too many terms if not managed well. 
 
I opted to use LLMs because they better capture intent, increasing the chances of retrieving 
relevant information across a broader spectrum of queries. 



 

We've expanded our queries to capture user intent, time to refine the system to return only 
the most relevant results. To achieve this, we need to implement some form of reranking 
system. 
 
Bi-encoders independently encode the input and output text and then comparing them 
based on similarity. However, they don't account for the relationships between the texts. 
 
Cross-encoders, on the other hand, use a single encoder to process both elements together, 
producing a joint representation that captures both the content and relationship between 
the text. While cross-encoders are slower and more resource-intensive, they offer higher 
accuracy, especially in cases where subtle differences—like in engineering documents—can 
significantly impact meaning. 
 
Bi-encoders are more efficient for large-scale comparisons  while for smaller datasets, where 
accuracy is key, cross-encoders are the better choice. Given the limited data being returned, 
I chose a cross-encoder reranking system to ensure precision and capture those important 
subtle distinctions, which substantially improved the generated response from the system. 
 
Suggested Tools: 
Cohere – Rerank 
Custom Self Build 
Open_AI cookbook 
sentence_transformers from Hugging Face 



 

Those familiar with LLMs might be wondering why I haven’t mentioned prompt engineering 
yet. I did incorporate elements of it, such as adjusting queries by assigning specific expert 
personas—like a drilling engineer, completions engineer, or exploration geologist—
depending on the query. I also allowed for fine-tuning of parameters like temperature to 
control the model's determinism and randomness in generating responses. 
 
However, this is one of the areas where education may be a better option over system 
controls.  
 
At this point, I switched from ChatGPT to a fine-tuned version of Phi2, a small language 
model, to have a model focused on the linguistic patterns more prevalent in the Energy 
Sector. Using the small language model increases control over data security and privacy 
through hosting in a private cloud environment. 
 
Suggested Tools: 
Anthropic – Claude 
Cohere - Command 
Google – Gemini 
Hugging Face – Open-Source Language Models 
OpenAI - ChatGPT 
 
CoLab 
LoRA 
QLoRA 
  



 

We've made significant progress in optimising the system. But given my background in 
network graphs, this felt like a perfect opportunity to leverage a graph database, especially 
as they support vector storage. Looking at the metadata and the NER entities we've 
extracted I would say there is a basic ontology for the graph. Implementing a graph database 
we can connect diverse datasets creating a traversable network of data, making it easier to 
access and link disparate information. 
 
A knowledge graph is a structured data model that organizes and connects data through 
entities, relationships, and attributes, making complex data easier to analyse and visualize. 
In the energy industry, knowledge graphs can enhance operations by integrating data from 
multiple sources—using information such as well locations, geological formations, and 
equipment—while mapping the relationships between these entities. This interconnected 
view helps identify patterns and extract insights, improving operational efficiency and 
decision-making, adding pattern search to the systems formidable arsenal of search tools.  
 
When structured knowledge and its semantics are stored in a knowledge graph, combining 
semantic matching with structured traversal, the significant potential to enhance human 
understanding and explainability through data nodes is unlocked, as is machine 
comprehension through vectors, which enables us to leverage the strengths of both 
approaches. Knowledge graphs can address challenges RAG faces, such as handling similar 
documents or information spread across multiple repositories, revealing deeper insights and 
managing data more effectively. This helps enhance RAG's performance in complex decision-
making processes like risk management. 
 
The theoretical Knowledge Graph on the screen illustrates various interconnected elements: 
Green nodes representing wells, Brown nodes representing drilling sections, Pink nodes for 
drill bits, Red nodes for MWD equipment, Beige nodes for DD equipment, and Blue nodes 
for Lessons Learned. By building on this concept, we can continue to add additional nodes 
and relationships—such as personnel, lithology, wireline logs, mud reports, and NCRs—
gradually constructing a comprehensive view of the drilling campaigns and their broader 
environment. 
 



Suggested Tools: 
Amazon Neptune 
Graph-tool 
Neo4j 
NetworkX 
TigerGraph 
 
 
 
 

  



 

By deploying this system as an API, you can integrate it with platforms like Teams, 
WhatsApp, Slack, or your own custom interface—or even all of them. The possibilities are 
only limited by your imagination and ambition.(CLICK) 
 
You could even use Agentic AI to perform actions based on the information retrieved. 
 
What I’ve described is achievable for any company, regardless of size, using tools like 
ChromaDB, Neo4j, and Hugging Face. 
 
At this point, you already have a powerful tool. With a user-friendly interface, you can ask 
questions in natural language, while the underlying knowledge graph connects and 
organises data from various sources. This opens the door to exciting possibilities like 
network analysis, centrality techniques, and even edge prediction to discover hidden 
connections. 
 
There was something my bot was doing consistently that I haven’t mentioned yet—it’s been 
including a link to the source data with every response. 
 
I’m going to end on a point I make whenever I speak about AI. If you only take away one 
thing, I hope it is this: In 2009, Air France flight 447 tragically crashed over the Atlantic, 
largely due to pilot over-reliance on autopilot. The pilots, though experienced, lacked the 
hands-on flying skills to manage the crisis. This serves as a critical reminder of the dangers of 
over reliance on automated. 
 
While AI is a powerful tool, it’s essential to maintain our critical thinking and evaluate the 
responses it provides. Ultimately, we are responsible for how we use it. AI in all its forms is 
an incredibly powerful efficiency tool, but is only a tool, and ultimately, we have 
responsibility for that tool and how it is used. 



 

 

 

  



 

 

 

 


