
Beyond Semantic Search

Leveraging LLM’s, RAG and Knowledge Graphs

Our success as a species lies in something our ancestors did round the campfire, something
we are doing right here right now: Storytelling. We've always been adept at sharing complex
ideas, and we do it through language.

Consider the countless reports, emails, and memos you've written. Each one is a treasure
trove of analysis and expertise. Imagine scaling this knowledge across an entire company, or
even an industry—decades of collective knowledge, experience and wisdom. It's a vast
resource, but accessing it effectively remains a challenge, even with tools like keyword or
fuzzy search.

As someone who is passionate about language, is endlessly curious, and with a background
in exploration drilling, I was drawn to exploring the potential for language models in the
energy industry. When ChatGPT gained popularity, I embarked on a personal research
project using Equinor’s open sourced Volve dataset. My goal was to create an information
retrieval system that could extract valuable insights from this precious repository of drilling
data.

Video Link: https://youtu.be/UO1tQ4SfgKQ?si=HfxCTb5C8iWM95cq

Human behavior and communication is intriguing isn’t it. That's why I’m drawn to natural
language processing (NLP. When ChatGPT was released, I was initially very excited, but I feel
we largely use it incorrectly.

Large Language Models aren't search engines. They're language calculators that predict the
most likely next word based on patterns in their training data. This approach has limitations.
For instance, the training data becomes outdated as soon as training is complete, LLMs often
lack contextual understanding, Additionally, they can generate highly convincing but
inaccurate information, you could say LLM’s are like some politicians you might be familiar
with.

Instead of treating them as a reliable information repository, I believe we should view them
as an interface to a recommendation engine.

Making sure the system could access live relevant data, was critical. This would help
minimize the risk of generating inaccurate or misleading responses. Using the LLM to
construct database queries was too error prone, time to explore a more robust approach:
Retrieval Augmented Generation (RAG).

This method leverages semantic search to retrieve relevant information from a knowledge
base, enhancing the LLM's ability to generate informative and contextually appropriate
responses.

How many people are familiar with RAG?

Transformer models, like those used in RAG, have two main components: an encoder and a
decoder. The encoder part captures context within text by converting it into a list of
numbers, hundreds even thousands of places long, depending on the model. These number
lists, known as embeddings or vectors, can then be stored in a Vector Database.

RAG works by comparing these vectors to find the most similar ones. Think of it like a
coordinates on a map. We could say that Aberdeen and Dundee are more similar to one
another than they are to Riyadh by dint of geographical proximity. RAG does something
similar, but instead of plotting places on a 2D map, it plots them in a much higher-
dimensional space.

A basic RAG process looks something like this. There is part of this diagram that I haven’t yet
mentioned, Guardrails. Guardrails are the part of the system that ensures an LLM-based tool
behaves predictably and reliably, a safety net if you will. You can design something yourself
or use an off the shelf Framework like NeMo or Guardrails.ai.

Back to our RAG process, A user passes a query to the system. The query gets screened by
the guardrails to ensure it's appropriate and within the system's capabilities. The query is
converted into vector and retrieves data from the vector database. The original query is then
augmented with the most relevant information returned from the Vector Database, giving
the LLM greater context, allowing it to generate a more accurate response. The response
then goes back through the guardrails to ensure it's safe and on point.

Something we need to consider prior to adding data to the vector database, is how we split
the documents, a chunking strategy. When splitting our documents into chunks, we want to
capture the meaning clearly. Opting for sentence-level chunks might miss context, while
large paragraphs can introduce noise or dilute the importance of specific words or phrases.

To address this, I used a technique called context-aware chunking. It leverages a document’s
linguistic structure to create meaningful and relevant chunks for comparison. These
vectorized chunks are used for targeted search, but the full paragraph is returned for greater
context when the LLM is generating a response.

What have we achieved? A powerful semantic search and summarisation system.

Suggested Tools:
ChromaDB
Pgvector
Pinecone
Weviate
LangChain
NLTK
Spacy

While this basic RAG system is a valuable tool, it's important to acknowledge its limitations.
One significant issue is that AI systems inevitably lose information from the original text. This
loss can manifest in various ways, such as the omission of tangential details or the
diminished significance of specific keywords.

To mitigate these issues, we can implement strategies like Named Entity Recognition. An NER
model identifies key entities within text, such as people, organizations, locations, or
products, as illustrated by the example on screen. By training a custom NER model, I had a
tool to extract more relevant entities like equipment, events, lithology, personnel, and
datasets.

The extracted entities can then be used to enhance the query process by tagging these
entities onto metadata when adding vectors to the vector database, along with existing
metadata like well name, report type, and involved companies. Applying the same process
to queries, this allows us to filter data based on the presence or absence of specific entities,
like using a "WHERE" clause in SQL. This extra context improves the accuracy and relevance
of search results.

Suggested Tools:
Flair
Neural Networks
NLTK
Spacy
Stanford NER Tagger

Brat(Browser-Based Rapid Annotation Tool)
Explosion Prodigy
Label Studio

Additional Areas to Explore:
Topic Modelling

Another issue with LLMs is they are inherently stateless, meaning they treat each query
independently. This was inadequate. I needed the system to remember past interactions and
use them as context when responding to queries. The system needed short term memory.
Luckily, that are several great frameworks out there, I settled on LangChain.

There are several approaches to implementing short term, or conversational, memory. You
could store the entire conversation history and pass it to the LLM. This offers maximum data
retention, but it can slow down responses, increase costs and limits interaction length due to
token/word limits.

Another strategy is to summarise the conversation and pass the summary as context. While
this reduces word count and allows for longer conversations, it can significantly increase
costs and reliance on the LLM.

I opted for the Buffer Window method. This approach maintains only the most recent
interactions, enabling ongoing conversations while keeping costs manageable. However, it
may result in some loss of context from earlier parts of the conversation.

Suggested tools:
AutoChain
Custom Self Build
LangChain
LlamaIndex
Vellum

Not always.

To address vague user queries, we can use Query Expansion, a technique search engines
have employed for years to deliver smarter results. It uses natural language processing (NLP)
methods like synonym expansion, for example searching for "car" also brings up results for
"automobile.“, stemming/lemmatization or using the root of a word, so a search for
"running" also includes "run”, and user behavior analysis, for example using data from other
users to help suggest additional terms.

Today, query expansion is more sophisticated, lets discuss two common methods:

Pseudo Relevance Feedback (PRF): This method retrieves the top results, scans them for
frequently occurring terms (using NER), and adds these to the original query to refine the
search. However, if the initial results are off-target it could lead to topic drift, while irrelevant
terms might clutter the query, both of which result in the system returning less relevant
information.

Large Language Models (LLMs): LLMs infer intent by recognizing subtle cues and context,
dynamically expanding queries or suggesting variations. This approach excels at
disambiguating terms and handling diverse topics, but it can be resource-intensive, slow, and
prone to adding too many terms if not managed well.

I opted to use LLMs because they better capture intent, increasing the chances of retrieving
relevant information across a broader spectrum of queries.

We've expanded our queries to capture user intent, time to refine the system to return only
the most relevant results. To achieve this, we need to implement some form of reranking
system.

Bi-encoders independently encode the input and output text and then comparing them
based on similarity. However, they don't account for the relationships between the texts.

Cross-encoders, on the other hand, use a single encoder to process both elements together,
producing a joint representation that captures both the content and relationship between
the text. While cross-encoders are slower and more resource-intensive, they offer higher
accuracy, especially in cases where subtle differences—like in engineering documents—can
significantly impact meaning.

Bi-encoders are more efficient for large-scale comparisons while for smaller datasets, where
accuracy is key, cross-encoders are the better choice. Given the limited data being returned,
I chose a cross-encoder reranking system to ensure precision and capture those important
subtle distinctions, which substantially improved the generated response from the system.

Suggested Tools:
Cohere – Rerank
Custom Self Build
Open_AI cookbook
sentence_transformers from Hugging Face

Those familiar with LLMs might be wondering why I haven’t mentioned prompt engineering
yet. I did incorporate elements of it, such as adjusting queries by assigning specific expert
personas—like a drilling engineer, completions engineer, or exploration geologist—
depending on the query. I also allowed for fine-tuning of parameters like temperature to
control the model's determinism and randomness in generating responses.

However, this is one of the areas where education may be a better option over system
controls.

At this point, I switched from ChatGPT to a fine-tuned version of Phi2, a small language
model, to have a model focused on the linguistic patterns more prevalent in the Energy
Sector. Using the small language model increases control over data security and privacy
through hosting in a private cloud environment.

Suggested Tools:
Anthropic – Claude
Cohere - Command
Google – Gemini
Hugging Face – Open-Source Language Models
OpenAI - ChatGPT

CoLab
LoRA
QLoRA

We've made significant progress in optimising the system. But given my background in
network graphs, this felt like a perfect opportunity to leverage a graph database, especially
as they support vector storage. Looking at the metadata and the NER entities we've
extracted I would say there is a basic ontology for the graph. Implementing a graph database
we can connect diverse datasets creating a traversable network of data, making it easier to
access and link disparate information.

A knowledge graph is a structured data model that organizes and connects data through
entities, relationships, and attributes, making complex data easier to analyse and visualize.
In the energy industry, knowledge graphs can enhance operations by integrating data from
multiple sources—using information such as well locations, geological formations, and
equipment—while mapping the relationships between these entities. This interconnected
view helps identify patterns and extract insights, improving operational efficiency and
decision-making, adding pattern search to the systems formidable arsenal of search tools.

When structured knowledge and its semantics are stored in a knowledge graph, combining
semantic matching with structured traversal, the significant potential to enhance human
understanding and explainability through data nodes is unlocked, as is machine
comprehension through vectors, which enables us to leverage the strengths of both
approaches. Knowledge graphs can address challenges RAG faces, such as handling similar
documents or information spread across multiple repositories, revealing deeper insights and
managing data more effectively. This helps enhance RAG's performance in complex decision-
making processes like risk management.

The theoretical Knowledge Graph on the screen illustrates various interconnected elements:
Green nodes representing wells, Brown nodes representing drilling sections, Pink nodes for
drill bits, Red nodes for MWD equipment, Beige nodes for DD equipment, and Blue nodes
for Lessons Learned. By building on this concept, we can continue to add additional nodes
and relationships—such as personnel, lithology, wireline logs, mud reports, and NCRs—
gradually constructing a comprehensive view of the drilling campaigns and their broader
environment.

Suggested Tools:
Amazon Neptune
Graph-tool
Neo4j
NetworkX
TigerGraph

By deploying this system as an API, you can integrate it with platforms like Teams,
WhatsApp, Slack, or your own custom interface—or even all of them. The possibilities are
only limited by your imagination and ambition.(CLICK)

You could even use Agentic AI to perform actions based on the information retrieved.

What I’ve described is achievable for any company, regardless of size, using tools like
ChromaDB, Neo4j, and Hugging Face.

At this point, you already have a powerful tool. With a user-friendly interface, you can ask
questions in natural language, while the underlying knowledge graph connects and
organises data from various sources. This opens the door to exciting possibilities like
network analysis, centrality techniques, and even edge prediction to discover hidden
connections.

There was something my bot was doing consistently that I haven’t mentioned yet—it’s been
including a link to the source data with every response.

I’m going to end on a point I make whenever I speak about AI. If you only take away one
thing, I hope it is this: In 2009, Air France flight 447 tragically crashed over the Atlantic,
largely due to pilot over-reliance on autopilot. The pilots, though experienced, lacked the
hands-on flying skills to manage the crisis. This serves as a critical reminder of the dangers of
over reliance on automated.

While AI is a powerful tool, it’s essential to maintain our critical thinking and evaluate the
responses it provides. Ultimately, we are responsible for how we use it. AI in all its forms is
an incredibly powerful efficiency tool, but is only a tool, and ultimately, we have
responsibility for that tool and how it is used.

