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• Artificial Intelligence (AI) and Machine Learning

• 5 Case Studies showing successful applications

 - Nuclear Magnetic Resonance T1 & T2 spectra analysis 

 - Prediction of shear velocities

 - Litho-facies and permeability prediction

 - Evolution of shaly water saturation equations

 - The log quality control and repair of electrical logs

Outline 
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Artificial Intelligence only requires Two Things

1. You tell the AI what you want

– This is its goal or fitness function

2. The data

There’s Minimal human interaction

– AI doesn’t require prior knowledge of the petrophysical response equations 

– There are no parameters to pick or cross-plots to make
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AI is given access to all the data 

These include:

• Electrical logs - GR, Rhob, caliper, drho etc.

• Core data  - porosity, core Sw, SCAL etc.

• Depth  - measured and TVDss (probably the most important parameters)

• Gas  - chromatography data (essentially a free measurement)

• Drilling data - ROP, Dexp etc.

• NMR  - T1 & T2 distributions (spectra)

• etc.

– Don’t worry if these data contain garbage, as explained later

– Loaded into the AI as n-dimensional data
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What is n-dimensional Data? 

1D

nD

3D

2D

Relational 

database where 

n is the number 

of logs and 

other inputs
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AI Engine

• AI is data analysis that learns from data, identify patterns and makes 

predictions with the minimal human intervention

• AI uses neural networks, genetic algorithms, fuzzy logic, random forests

• AI avoids Garbage In, Garbage Out (GIGO) by

- good data swamping poor data

- by using fuzzy logic (modified Bayesian statistics)
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AI

• We define the problem - Fitness Function

• We give the program access to the data 

• The computer works through successive iterations ‘evolves’ the best answer

Change AI code

Does it solve the problem better ? 

Is it fitter?

AI 

Computer 

Code

Ignore

No
Keep

Yes
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NMR Pattern Recognition 

• Case Study

– A gas field with an oil problem

• Data:

– Conventional logs

– NMR T1 and T2

– Gas Chromatography 

– Core derived oil and gas saturations

• Petrophysical analysis 
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Case Study 2 – NMR Pattern Recognition 

• A gas field with an oil problem

• Residual oil pockets remain within the main gas reservoir 

• This oil is highly viscous

• If produced could block the production tubing 

• The client needs to identify oil and gas in order to only perforate the gas zones

• Conventional petrophysical techniques like density / neutron porosity separation 

can’t differentiate oil and gas due to thin beds and the shaly formation 
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• The solution lies with nuclear magnetic resonance (NMR)

• Essentially this measures how hydrogen atoms respond to a magnetic field

Nuclear Magnetic Resonance
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• AI determines the NMR waveforms associated with the core derived oil and gas 

analysis, in a similar way to how face recognition algorithms work

• It then predicts the fluid content of all the reservoir beds 

• Fitness Function: ‘Determine the waveforms that give the best match to the core 

derived oil and gas saturations in the reservoir’

Oil and Gas identification using the NMR and AI
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Results – Real time identification of gas and oil zones
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• An extension of the classical logic of 0 and 1  

 - uses a ‘grey scale’ between 0 and 1

• Fuzzy logic looks for correlations in data space

 - asserts there is valuable information in the fuzziness (1/crispness)

 - avoids the problems of outliers and noise

• Fuzzy logic says any petrophysical interpretation is possible

 - only some interpretations are more likely than others

Fuzzy Logic (Modified Bayesian Statistics)
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The AI Engine

• In n-dimensional data space, the k-NN algorithm assumes 

that similar things exist in close proximity or nearest 

neighbour

- e.g. litho-facies - sand, shale or carbonate

• The straight-line distance (the Euclidean distance) is used

- in addition, fuzzy logic weights these lines depending 

on the likelihood of the association

• For instance, if the gamma-ray is highly correlated (crisp) 

with shaliness, this vector will have more influence on the 

AI’s decision compared to say the caliper reading at the 

same depth
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Shear Velocity Prediction using AI
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• Case Study

- North Sea Field 

• Only four wells had recorded shear velocity data

• Shear velocity was required on all 30 wells

- for rock property analysis 

- wellbore stability  

• Gaps and cycle skips need to be fixed
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Shear Velocity Prediction using AI
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Fitness Function – ‘Determine a relationship so 

that the predicted shear velocities are as close as 

possible to log derived shear velocities’

Predicted shear velocity = Function of:

 - conventional logs

 - drilling data

 - gas chromatography data

The AI evolves the relationship

The AI predictions are better than the recorded logs!

- because AI has access to all logs, including logs with 

high vertical resolution like the micro-resistivity
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Advantages of using AI in Petrophysical Analysis 

• AI doesn’t require prior knowledge of the petrophysical response equations 

• AI is self-calibrating.  Just give it the data

• AI avoids the problem of ‘Garbage In, Garbage Out’, 

- by ignoring noise and outliers

• There is very little user intervention 

- There are no parameters to pick or cross-plots to make

• AI programs work with an unlimited number of electrical logs, core and gas 

chromatography data; and don’t ‘fall-over’ if some of those inputs are missing

• AI is not a Black Box, as it provides insights into how it makes predictions
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AI Requirements

• Data

• Fitness Function

– Tells the AI what you want it to do

– Written in plain English

– Question - Does the AI understand what you really want?

18



The Fitness Function

• King Midas, in Greek mythology, was granted his wish that everything he 

touched turned into gold

• He didn’t realise that this included his food and his children

• Similarly, an ill-conceived Fitness Function may give unexpected results
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Conclusions

• AI and Machine Learning makes petrophysical analysis easy 

- supports rather than replaces the petrophysicist 

• All 5 case studies and AI logic

 - Cuddy, S. (2021) The benefits and dangers of using artificial 

intelligence in petrophysics. Artificial Intelligence in Geosciences

 - steve.cuddy@btinternet.com
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