

1-2 October 2024 – Chester Hotel, Aberdeen, UK

Development of A Fit-for-Purpose CO₂ Injection Model for Casing And Tubing Design

Ruggero Trevisan VP Europe - <mark>Altus</mark> Well Experts

- Project specifics
- Well design challenges
- CO₂ Injection Model (CIM)
- Tubing and Casing design/verification
- "Agile" development
- Conclusion and Future work

by 2030.

seabed

North Sea.

salt.

Viking CCS Project Overview

Viking CCS Project Conditions and Challenges

- Transportation of industrial CO₂
 (with impurities) in dense phase
- Dedicated platform injection wells drilled in depleted gas fields
- Topsides chokes employed
- Low pressure reservoir

Viking CCS Transportation and Storage System Overview

Well Design Challenges

- Depleted Reservoir Injection \rightarrow Wellbore thermal effects
- CO_2 impurities variations \rightarrow Modelling, phase envelope
- Standards for tubular design \rightarrow Operations and load cases
- Collaborative use of flow assurance and tubular design → Lack of single application to streamline the process

CO₂ Injection Model (CIM)

- CIM Selection of GERG-2008: ongoing efforts for robust EOS in developing CCS technology
- Choke functionality:
 - o temperature loss
 - fluid vaporization across the choke
 - \circ pressure loss
 - fluid phase at outlet
 - Flow coefficient Cv
- Comparison of CIM with Industry Flow Assurance (FAM)

	Composition (Molar %)					
Component	Maximum Impurity Case	Intermediate Impurity Case	Pure Case			
CO2	96.000	98.0276	100.0			
H ₂	2.000	0.6177	0.0			
N2	1.500	0.3936	0.0			
CH₄	0.490	0.2843	0.0			
H ₂ O	0.005	0.0037	0.0			
H ₂ S	0.002	0.0004	0.0			
Ar	0.002	0.6724	0.0			
O 2	0.001	0.0003	0.0			
Total	100.000	100.0000	100.0			

CO₂ Injection Operations

	Input			Result						
		BHFP	WHFT		WHFP		BHFT			
Case	Mass Flow	(psi)	(°F)	Phase	(psi)		(°F)			
					FAM	CIM	% Dev	FAM	CIM	% Dev*
А	High	340	26.7	2-Phase	670	710	5.6%	4.5	7.1	3.0%
В	High	4500	39.4	Dense	1960	1960	0.0%	71.3	70.6	0.9%
С	Medium	340	-6.0	2-Phase	330	340	2.9%	1.9	6.9	5.7%
D	Low	340	35.5	Gas	470	500	6.0%	90.1	82.3	8.8%

Temperature (°F)

Well Design – Viking CCS

- 3 string architecture, open hole lower completion
- Injection via surface Christmas tree with choke control
- Tubing Run Down Hole Safety Valve (TRDHSV) for catastrophic damage isolation
- Fit-for-purpose TSA application needed due to limitations in legacy software for modeling CO₂ injection operations (into depleted reservoirs) and tubular stress analysis

Well Design – Operating Scenarios

Scenario	Well Phase	Description	
Scenario 1	Early-Life	Steady-state injection – Gas, multi-phase	e & dense-phase
Scenario 2	Early-Life	Short-term shut-in after injection	
Scenario 3	Early-Life	Long-term shut-in after injection	
Scenario 4	Early-Life	Startup/restart after shut-in	
Scenario 5	Early-Life	Surface leak/venting	°
Scenario 6	Late-Life	Steady-state injection – Dense-phase	
Scenario 7	Late-Life	Short-term shut-in after injection	2000
Scenario 8	Late-Life	Long-term shut-in after injection	
Scenario 9	Late-Life	Startup/restart after shut-in	4000
Scenario 10	Late-Life	Surface leak/venting	Ξ.
	•	·	

Well Design – Load Cases for Production Casing and Tubing

Conclusion and Future work

- Conclusion
 - Fit-for-Purpose solution that integrates CCS fluid modelling in tubular design application advantages
 - Viking proposed well design is inherently robust, accommodating fluctuating injection rates for long-term performance
 - Ongoing development targets modeling gaps, aiming for a complete design analysis package by end-2024
- Future work:
 - Alternatives EOS with impurities alternative to GERG-2008 EOS
 - Create functionality for simulating well leaks, from small emissions to rare blowouts, to model extreme low temperatures

ACKNOWLEDGEMENTS / THANK YOU / QUESTIONS

Harbour Energy plc, and Viking CCS license partner BP plc

Altus Well Experts, Inc.

Dr. Afif Halal