SPE-224019-MS

"Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology"

> Speakers: Massimiliano Gaeta Ramy Abdallah

Authors: M. Gaeta, R. Abdallah, G. lervese

Presentation Outline

- Project Introduction & Background
- Challenges
- Solutions
- Technology Overview
- Well Intervention Design
- Execution
- DAS & DTS Results
- Results & Potential Improvements

SPE-224019-MS

Project Background Overview

- Type of Well: Geothermal injection
- Injectivity Decline: Progressive reduction over time
- Significant drop in injectivity after each well shut-in, with no recovery
- Diagnostic Inspection (Dec 2023) Results:
 - I. HUD Shallower Than Expected: 2474m MD, 90.8m above TD of 2564.8m MD.
 - II. Only 15 out of 22 screens exposed to injection flow, restricting reservoir contact.
 - III. Scaling Buildup: Whiteish scaling material observed in screen holes, blocking fluid flow most CaCO₃
 - IV. Scaling severity increased with depth, particularly on the low side

SPE-224019-MS

Project Background Overview

- Large Completion: 13 3/8" upper casing section.
 - **Formation Limit**: Unable to support full water hydrostatic pressure.
- Sand Compaction: ~91m of compacted sand in 7" liner.
 - Inclination: 50° deviation.
 - **No Tapered Guide:** Step transition between 7" liner and 9 5/8" casing

SPE-224019-MS

Initial Injectivity Plot

Technical conference organised by

SPE-224019-MS

Recent Injectivity Plot

Technical conference organised by

Challenges

SPE-224019-MS

Key Challenges Ahead

2. Scale Removal from Screens:

- Targeted elimination of scale deposits obstructing screen flow paths
- Maximize reservoir contact exposing all 22 screen to the flow paths
- 4. Injection Profile & Treatment Assessment:
 - Usually done after weeks to evaluate new injection parameters
 - Water T > than reservoir

1. Effective Compacted Sand Clean out

- Low Annular Velocity, especially challenging in inclined sections.
- Foam Inefficiency based on previous operational experiences.
- Absence of Tapered in 9 5/8"

8. Matrix Stimulation:

- Optimize acid recipe due to limited success of previous treatment.
- Slow Acid Propagation: Initial effects observed ~ 10 days post-injection.

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

SPE-224019-MS

Concentric Coiled Tubing

SPE-224019-MS

Concentric Downhole Tool

SPE-224019-MS

Concentric Downhole Tool – Extraction Mode

SPE-224019-MS

Concentric Downhole Tool – Jetting Mode

SPE-224019-MS

02

04

03

Concentric Downhole Tool – Customized Centralizer

Just one to mitigate the risk to get stuck

Scale Removal and Matrix

SPE-224019-MS

Swapping Technologies – From CCT to HCTT

Scale Removal and Matrix Stimulation

SPE-224019-MS

Hybrid CT Technology

Hybrid Coiled Tubing Technology:

Combines CT with 4mm OD coaxial cable, integrating both optical fibers and electrical conductor

IISTA LOGGER

- Technology Integration: DTS, DAS & PLT capability
- Operational Mechanisms:
 - Optical Fibers: Single-Mode and Multi-Mode for **DFSO** and **Data** Transmission
 - Electrical Conductors: Power supply and **Data** transfer CT ELECTRICAL TOOL
- Real-Time Sensing BHA

Scale Removal and Matrix

Downhole Tool - COANDA Effect

COANDA Technology

- Tool based on COANDA* effect, a proven fluidic oscillator technology which causes pressure waves, that create pulsating pressure waves within the wellbore and formation fluids.
- Pressure waves propagate radially from the tool and can breakup many obstacles
- Eliminates the standoff requirements of jetting nozzles
- Metal to Metal seals with no moving parts to fail

***Coanda Effect:** A moving stream of fluid in contact with a curved surface will tend to follow the curvature of the surface rather than continue traveling in a straight line

SPE-224019-MS

Scale Removal and Matrix

<u>Otion latia</u>

Equation for Matrix Stimulation

Restore or Improve Formation Injectivity = Chemical Action + Mechanical Action \Rightarrow Effective Matrix Stimulation \Rightarrow Increase Fluid Propagation Velocity Over Time = $\frac{\Delta_{v \text{ fluid}}}{\Lambda t} > 0$

Technical conference organised by

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

04

Downhole Tool - COANDA Effect

Tailored Acid Recipe

Scale Removal Action:

HCl effectively removes scales by reacting with calcium carbonates (*CaCO*3CaCO 3). Chemical Reaction:

 $2HCl + CaCO_3 \rightarrow CaCl_2 + CO_2 + H_2O$

Fast reaction kinetics: 2 hours are enough for nearly complete carbonate conversion.

Preventive Action:

Scale Preventer: XSCAL 2Utilizes phosphonate acid (HPO₃²⁻) to keep alkaline earth metal ions in soluble form by binding to their positive charges..

Downhole Tool - COANDA Effect

SPE-224019-MS

Tailored Acid Recipe

DTS Model

SPE-224019-MS

Inverted Algorithm – Cool Down Model T_{Water Injected} > T_{Reservoir} \Rightarrow DTS warm-back model not applicable \Rightarrow A reverse version of the analytical warm-back DTS cool-down model

Desing of Service

Final Job Desing

1. CCT Run:

- Pump at target rate while descending, maximizing suction as much as possible.
- Upon approaching the Top of Sand proceed in bites of up to 10 ft.
- Switch to Jetting mode to break up the top of sand (when/if required).

2. HCTT Run

- Confirm TD and all 22-screen exposed to injection flow with RT BHA and Active CCL
- Acquire baseline DTS & DAS data and pre-stimulation injection profile.
- Conduct Acid Stimulation, leveraging the COANDA effect for pin-point stimulation.
- Perform Post-Acid DTS & DAS injection profile assessment

Execution

SPE-224019-MS

Well Intervention Execution

Technical conference organised by

Execution

SPE-224019-MS

Well Intervention Execution

Technical conference organised by

Execution

SPE-224019-MS

Well Intervention Execution

Technical conference organised by

Results Overview and Possible Improvement

- CCT Proven as Optimal Solution: CCT confirmed to be the best option in similar conditions, achieving complete sand removal from the well.
- Efficient CT Swap with Real-Time BHA: Swapping Coiled Tubing took only a few hours, with significant contribution from the Real-Time BHA.
- Enhanced Acid Propagation: The COANDA effect combined with a tailored 20% HCL recipe significantly improved well performance and acid propagation.
- DTS Analysis with Inverted Algorithm: The inverted algorithm for DTS analysis demonstrated strong results.
- DTS & DAS for Efficiency: DTS & DAS analysis reduced time and costs by eliminating the need for additional well interventions for injection profiling.
- Optimized Acid Treatment: Leveraging DTS & DAS, along with the RT BHA and Coanda effect, a mud acid to treat the lower sandstone layer could be implemented.

Technical conference organised by

Methodology

Enhancing Well Performance via Cool-Down Analysis of Post-Acid Hot Fluid

DTS Waterfall Plot: Full Wellbore Overview Across All Operational Phases

A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

DTS Waterfall Plot: Lower Completion Overview Across All Operational Phases

DTS Waterfall Plot: High Injection Rate and Cool-Down Phases in Lower Completion

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

DAS FBEs 0-1Hz Waterfall Plot: Full Wellbore Overview Across All Operational Phases

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

DAS Slow Strain Waterfall Plot: Overview Across All Operational Phases of the

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

DAS Slow Strain Waterfall Plot: Overview Across All Operational Phases of the Lower

SPE-224019-MS: Advanced Techniques for Addressing Critical Injection Well Challenges: A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

DAS Slow Strain Waterfall Map – Transition from the Shut-in to Injection Periods –

Technical conference organised by

Comparison of DTS and DAS Waterfall Maps

DTS and DAS Slow Strain Waterfall Maps – Over the Lower Completion Section

Results – Zoom into lower completion

Quantitate Analysis using Analytical Cool-down Model Injection Allocation Results

A Focus on Concentric and Hybrid Coiled Tubing, Innovative Inverted DTS Algorithm and Coanda Effect Technology

Results – Zoom into lower completion

Qualitative Analysis of Transient DAS Slow Strain Plumes

Thank you

SPE-224019-MS

