

Fractured Reservoir Rock Modelling:

Al-driven Segmentation, Multiscale Pore Network Modelling and Experimental Investigation

C. T. Panaitescu, M. E. Kartal, Y. Tanino, A. Starkey, N. S. Japperi, K. Wu

OUTLINE

- Introduction and challenges in modelling fractured reservoirs
- Geomechanics-flow fracturing experiments
- Digital Rock Technology
- Semantic Segmentation: Applications of Al
- Fracture-Matrix modelling

1495

UNIVERSITY OF ABERDEEN

UNIVERSITY OF ABERDEE! School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering/@abdn.ac.uk

FRACTURED GEOLOGIC MEDIA

- Fracture has a controlling impact on reservoir flow systems, and there is high uncertainty of fracture systems in reservoirs.
- There is a gap in the flow simulation in the Fracture-matrix system.

Full core: 5 inches in diameter resolution 200 microns/voxel

Plug: 1.5 inches in diameter, resolution 20 microns/voxel

Small SEM chip: 25 mm in diameter resolution 0.25 microns/pixel

Mini plug: 5 mm in diameter, resolution 1 microns/voxel

DEVEX Conference

15

Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDE! School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

FRACTURED GEOLOGIC MEDIA

- Fracture has a controlling impact on reservoir flow systems, and there is high uncertainty of fracture systems in reservoirs.
- There is a gap in the flow simulation in the Fracture-matrix system.

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEE School of Engineering Fraser Nobe Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

DEVEX Conference, Aberdeen, 28th of May 2024

😽 UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE

engineering@abdn.ac.ul

4

NO NO N

DIGITAL ROCK TECHNOLOGY

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

PORE SCALE FLUID SIMULATION TECHNIQUES

Digital Rock Technology techniques include:

- (A) *Direct simulation* using Finite Difference, Finite Volume, or Lattice Boltzmann:
- The method is very accurate but resource-intensive and not easily generalised

(B) Pore network models (PNM):

- Can quantify the macroscale flow of the matrix for the reservoir rock (pore size distribution and connectivity)
- Computationally efficient single and multiphase flow

UNIVERSITY OF ABERDEEI School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn at uk

PORE SCALE FLUID SIMULATION TECHNIQUES

Digital Rock Technology techniques include:

- (A) *Direct simulation* using Finite Difference, Finite Volume, or Lattice Boltzmann:
- The method is very accurate but resource-intensive and not easily generalised

(B) Pore network models (PNM):

- Can quantify the macroscale flow of the matrix for the reservoir rock (pore size distribution and connectivity)
- Computationally efficient single and multiphase flow

(C) Improved DRT technique - *Fracture-Matrix Pore network model (FPNM):*

- Quantify the multiscale fracture and matrix (Fracture and pore distribution and their connection)
- Computationally efficient **multiscale** and **single/multiphase** flow

UNFRACTURED SAMPLE ANALYSIS

DEVEX Conference, Aberdeen, 28th of May 2024

WIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

7

UNFRACTURED SAMPLE ANALYSIS

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdu.sc.uk

UNFRACTURED SAMPLE ANALYSIS

(m)

DEVEX Conference, Aberdeen, 28th of May 2024

📅 UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Buildin King's College Aberdeen AB24 3UE engineering@abdn.ac.u

ADVANCED MATRIX-FRACTURE MODELLING

(Neumann et al., 2021)

DEVEX Conference, Aberdeen, 28th of May 2024

1495

UNIVERSITY OF ABERDEEN

DEVEX2024

WINIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

ADVANCED MATRIX-FRACTURE MODELLING

Main-stream codes do not treat multiscale features differently

(3 steps)

Step 1: Multi-class segmentation

1495

UNIVERSITY OF ABERDEEN

DEVEX2024

UNIVERSITY OF ABERDEE School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

ADVANCED MATRIX-FRACTURE MODELLING

Main-stream codes do not treat multiscale features differently

(3 steps)

Step 1: Multi-class segmentationStep 2: Additional Fracture-Matrix Pore network extractionStep 3: Fracture-fracture and Fracture-pore physics

ABERDEEN

UNIVERSITY OF ABERDEE School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

DEEP LEARNING SEMANTIC SEGMENTATION

DEVEX Conference, Aberdeen, 28th of May 2024

WINIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

DEEP LEARNING SEMANTIC SEGMENTATION

Factorial Analysis performed on the relative importance of: ٠ backbone, architecture, objective function, model size, and transfer learning

The bubble area is directly proportional to FLOP usage or energy consumption per 100 epochs.

1495

UNIVERSITY OF ABERDEE School of Engineering Fraser Noble Build King's College Aberdee AB24 3UE engineering@abdn.ac.ul

2024

DEVEX Conference, Aberdeen, 28th of May

1495

UNIVERSITY OF ABERDEEN

DEEP LEARNING SEMANTIC SEGMENTATION

11

- Factorial Analysis performed on the relative importance of: backbone, architecture, objective function, model size, and transfer learning
- Dominant 2nd order effects for both performance and resource use.
- Using the new Minkowski Objective Function combined with pretraining improves performance by 4% even when considering area-based and pixel-based metrics (F1, IOU) but only when using transfer learning
- Model size and depth are less important than optimizing the match between factors
- Top performing model achieves F1 of 0.9 and IOU of 0.85
- Ballanced model achieves F1 of 0.9 and IOU of 0.84, but used 40% lower resources

The bubble area is directly proportional to FLOP usage or energy consumption per 100 epochs.

PORE-FRACTURE-VUG SEGMENTATION RESULTS

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

COMPARISON OF DEEP AND SHALLOW LEARNING

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEE! School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineerine@abdn.ac.uk

DEVEX Conference, Aberdeen, 28th of May 2024

Edge Filter Canny

Gabor Filter

50 ·

175 ·

Gabor Filter

175 ·

Ridge Filter Sato

FRACTURE ANALYSIS

Fracture permeability contribution: 21.5 mD (86.7%) Experimental post-fracture permeability: 24.8 mD

Aperture

DEVEX Conference, Aberdeen, 28th of May 2024

1495

UNIVERSITY OF ABERDEEN

DEVEX2024

UNIVERSITY OF ABERDEE! School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

LIMITED DOMAIN FRACTURE-MATRIX SYSTEM

A: MULTI-PORE CUBIC LAW Kz= 813.99 mD Kx= 747.75 mD Ky= 412.12 mD

B: SINGLE FRACTURE ELEMENT Kz= 1986.46 mD Kx=1281.89 mD Ky= 417.58 mD

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

FRACTURE-MATRIX SYSTEM

DEVEX Conference, Aberdeen, 28th of May 2024

WIVERSITY OF ABERDEEN School of Engineering Fraser Noble Building King's College Aberdeen Aberdeen Aberdeen engineering@abdn.ac.uk

UNIVERSITY OF ABERDEEN DEVEX 2024

DEVEX Conference, Aberdeen, 28th of May 2024

UNIVERSITY OF ABERDEL School of Engineering Fraser Noble Building King's College Aberdeen AB24 3UE engineering@abdn.ac.uk

CONCLUSIONS

• Flow properties of rock samples are obtained through the modified triaxial test experimental procedure, which is used to validate flow simulations.

• Al tools are used to identify and segment pore and fracture features at different scales and prepare for combined multiscale simulations.

• New approaches and results were presented for the quantification and modelling of flow in the complex multiscale fracture-matrix system.

THANK YOU

Q&A

